ECON 510

Introduction to Probability and Statistics II

Homework I

1) Let X_i be $1 \times k$ row vector of regressor matrix X for each i. Consider following estimator for the equation $y = X\beta + \varepsilon$:

$$\hat{\beta} = \underset{\beta}{\operatorname{arg min}} \left(\sum_{i=1}^{N} (y_i - X_i \beta)^2 + \lambda \sum_{j=1}^{k} \beta_j^2 \right)$$

- a) Derive a close form solution for $\hat{\beta}$ given any value of λ . (Hint: using matrix notation may simplify the derivation)
- b) Under what condition this new estimator is equivalent to classic OLS estimator.
- c) Now assume X is orthonormal (only for part c) i.e. XX = I then find the relation between OLS and this new estimator. Hint: result will be a function of OLS estimate and λ .
- **d**) Does this estimator unbiased? If not compute the bias in terms of X, λ and β .
- e) Compute the variance of $\hat{\beta}$
- **f**) Show that even if XX is not invertible, for each positive value of λ , $\hat{\beta}$ is uniquely determined. (bonus).
- 2) Consider the estimator $\hat{\beta} = (Z'AX)^{-1}Z'Ay$, where A is a symmetric $N \times N$ matrix of constants, in the multiple regression model $y = X\beta + \varepsilon$ where y is an $N \times 1$ vector, X is an $N \times k$ matrix, Z is an $N \times k$ matrix, β is a $k \times 1$ vector and u is an $N \times 1$ vector.

We assume that $u \mid Z \sim N(0, \Sigma)$ where $\Sigma \neq \sigma^2 I$. For asymptotic theory assume that necessary laws of large numbers and central limit theorems can be applied.

- a) Obtain $E[\hat{\beta}]$ and $var(\hat{\beta})$. For this part only assume that Z and X are nonstochastic.
- **b)** Show that $\hat{\beta}$ is consistent, stating any necessary assumptions.
- c) Obtain the limit distribution of $(\sqrt{N}(\hat{\beta} \beta))$

- 3) Let $R\beta = r$ be linear restriction on coefficient vector β . Let $\hat{\beta}$ be unrestricted estimator of β and $\hat{\beta}_R$ be restricted estimator. Show that $\text{cov}[\hat{\beta}, \hat{\beta}_R \mid X] = Var[\hat{\beta}_R \mid X]$
- **4)** Consider regression equation $y = X\beta + \varepsilon$ where all classical linear regression assumptions hold and $var(\varepsilon \mid X) = \sigma^2$. Define residual sum of square as $RSS = (y X\hat{\beta})'(y X\hat{\beta})$. Find the distribution of following statistic RSS / σ^2 .
- 5) Consider a simple bivariate regression $y = \alpha + \beta x + \varepsilon$ with standard assumptions. Further assume y and x has same marginal distribution, i.e. $x \sim D(\mu, \sigma^2)$ and $y \sim D(\mu, \sigma^2)$ where D is a distribution, but $y \neq x$ in vector sense.
 - **a)** Show that $\hat{\beta} < 1$
 - **b**) Now, suppose we run $x = \alpha^* + \beta^* y + \varepsilon^*$. Compare the regression coefficients with ones in previous regression.
- **6)** Suppose, we have a regression model $y = X\beta + \varepsilon$ with standard assumptions. We know that from $\sigma^2 = E\left[\varepsilon^2\right]$ the variance of ε is a moment and a natural estimator for the variance σ^2 is sample variance $\tilde{\sigma}^2 = \frac{1}{N} \sum_{i=1}^N \varepsilon_i^2$. However, in practice we cannot observe true residual process, thus, it is not feasible. Whereas we could use following feasible estimator for the variance term: $\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^N \hat{\varepsilon}_i^2$ where $\hat{\varepsilon}$ is residuals from OLS regression. Now prove following statement: the feasible estimator $\hat{\sigma}^2$ is always smaller than infeasible estimator $\tilde{\sigma}^2$

7) Short questions

- a) Let $X = \begin{bmatrix} X_1 & X_2 \end{bmatrix}$ and assume $X_1'X_2 = 0$. Show $P = P_1 + P_2$
- **b)** Show that if X contains a constant term, then $\frac{1}{N} \sum_{i=1}^{N} \hat{y}_i = \overline{y}$ thus, sample mean of predicted y is equal to actual sample mean of y.
- c) Prove that R^2 is square of sample correlation between y and \hat{y} .
- **8**) Consider following simple linear regression model:

$$y_i = x_i \beta + \varepsilon_i$$
$$E[\varepsilon_i \mid x_i] = 0$$

where $x_i \in R$ define following estimators:

$$\hat{\beta} = \frac{\sum_{i=1}^{N} x_i y_i}{\sum_{i=1}^{N} x_i^2} \text{ and } \tilde{\beta} = \sum_{i=1}^{N} \frac{y_i}{x_i}$$

- a) Under stated assumptions, are these estimators consistent for β ?
- b) Are there conditions in which either estimator is efficient?