
Contents

4 Resampling Methods 39
4.1 Non-parametric computational estimation . . . . . . . . . . . 39
4.2 Bootstrap estimates of bias, standard error and MSE . . . . . 41
4.3 The Jackknife . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 The parametric bootstrap . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Simulation of random variables . . . . . . . . . . . . . 52
4.4.2 Example: parametric bootstrap . . . . . . . . . . . . . 54

4.5 The smoothed bootstrap . . . . . . . . . . . . . . . . . . . . . 56
4.6 The balanced bootstrap . . . . . . . . . . . . . . . . . . . . . 57
4.7 Bootstrapping bivariate data . . . . . . . . . . . . . . . . . . . 59

4.7.1 Non-parametric bootstrap . . . . . . . . . . . . . . . . 59
4.7.2 Fully parametric bootstrap . . . . . . . . . . . . . . . . 59
4.7.3 Semi-parametric bootstrap . . . . . . . . . . . . . . . . 60
4.7.4 Summary of the bivariate bootstrap . . . . . . . . . . . 64

4.8 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . 65

38



Chapter 4

Resampling Methods

4.1 Non-parametric computational estimation

Let x1, . . . , xn be a realization of the i.i.d. r.vs X1, . . . , Xn with a c.d.f. F .

We are interested in the precision of estimation of a population parameter
θF . One possibility is to estimate θF by θF̂ , where F̂ is the empirical distri-

bution funtion. We will denote an estimator of a parameter θ by θ̂.

Examples

1.

θF = E(X) =

∫ ∞

−∞
xf(x)dx,

where f(x) = dF (x)
dx

. Then

θF̂ =
1

n

n∑
i=1

xi,

which is the sample mean. Here we assign equal probability, 1
n
, to each

realization of X.

2.

θF = var(X) =

∫ ∞

−∞
(x− E(X))2f(x)dx.

Then

θF̂ =
1

n

n∑
i=1

(xi − x̄)2,

which is the variance of the sample.
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40 CHAPTER 4. RESAMPLING METHODS

3.

θF = F (c) = P (X 6 c)

Then

θF̂ =
1

n
#{i : xi 6 c}

Question
How good is θ̂ = θF̂ as an estimator of θF ?

Three common measures of goodness are:

Biasθ(θ̂) = EF (θ̂)− θ (4.1)

seθ(θ̂) =

√
var(θ̂) (4.2)

MSEθ(θ̂) = EF

[
(θ̂ − θ)2

]
(4.3)

It is easy to see that

MSEθ(θ̂) = var(θ̂) +
(
Biasθ(θ̂)

)2

(4.4)

Namely:

E
[
(θ̂ − θ)2

]
= E(θ̂2 − 2θ̂θ + θ2) =

E

[
θ̂2 − 2θ̂(E(θ̂)−Biasθ(θ̂)) +

(
E(θ̂)−Biasθ(θ̂)

)2
]

=

E

[
θ̂2 − 2θ̂E(θ̂)− 2θ̂Biasθ(θ̂) +

(
E(θ̂)

)2

− 2E(θ̂)Biasθ(θ̂) +
(
Biasθ(θ̂)

)2
]

=

E

[
θ̂2 − 2θ̂E(θ̂) +

(
E(θ̂)

)2
]

+
(
Biasθ(θ̂)

)2

=

var(θ̂) +
(
Biasθ(θ̂)

)2

Also note that

√
MSEθ(θ̂) =

√
var(θ̂) +

(
Biasθ(θ̂)

)2

= seθ(θ̂)×
√

1 +
(

Biasθ(θ̂)

seθ(θ̂)

)2 .
=

seθ(θ̂)×
[
1 + 1

2

(
Biasθ(θ̂)

seθ(θ̂)

)2
]
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Problem
How to calculate Biasθ(θ̂), seθ(θ̂) and MSEθ(θ̂)?

If we knew the distribution F then we could calculate expected value and
variance of the estimator θ̂ directly from definitions. It may be difficult if
f(x) = dF

dx
is complicated. Then a practical alternative is simulation:

• Generate a large number of random samples from the population with
the c.d.f. F and calculate a value of θ̂ for each sample.

• The mean and variance of the set of generated values of θ̂ will give a
good approximation to EF (θ̂) and varF (θ̂).

What if F is unknown? Then the simulation from F is impossible. In such
situations a further approximation is to replace F by F̂ . Let θ∗ be the value
of θ calculated at the random sample from F̂ . The idea is that

Biasθ(θ̂) ≈ Biasθ̂(θ
∗)

and

varF (θ̂) ≈ varF̂ (θ∗).

The heuristic reasoning is that F̂ is close to F and so the relationship of
θF̂ to θF should be close to the relationship of θF ∗ to θF̂ , as shown in the
diagram below.

True unknown Empirical Resampled

F
−−→
data F̂

−−−−−−−−→
resampling F ∗

↓ ↓ ↓
θF θF̂ θF ∗

4.2 Bootstrap estimates of bias, standard er-

ror and MSE

Assume we do not know F . The bootstrap estimates of Biasθ(θ̂), seθ(θ̂)
and MSEθ(θ̂) are obtained by substituting F̂ for F in (4.1), (4.2) and (4.3),
respectively. F̂ is the distribution which assigns probability 1

n
to each obser-

vation xi. So, a random sample from F̂ is just a random sample from the set
{x1, . . . , xn} with replacement. The procedure to calculate the estimates is
the following:
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• construct N samples of size n from {x1, . . . , xn} with replacement;

• denote the bootstrap samples by {x1, . . . , xn}i, i = 1, . . . , N ;

• denote by θ∗i the value of the estimator calculated for the i-th bootstrap
sample;

• calculate sample mean and variance of bootstrap estimates θ∗i , i =
1, . . . , n, that is θ̄∗ = 1

N

∑N
i=1 θ∗i ,

1
N−1

∑N
i=1(θ

∗
i − θ̄∗)2;

Biasθ(θ̂), varF (θ̂), seF (θ̂) and MSEθ(θ̂) are approximated, respectively, by
Biasθ̂(θ

∗), varF̂ (θ∗), seθ̂(θ
∗) and MSEθ̂(θ

∗) which are further approximated
by

B̂iasθ̂(θ
∗) = θ̄∗ − θ̂,

v̂arF̂ (θ∗) = 1
N−1

∑N
i=1(θ

∗
i − θ̄∗)2,

ŝeF̂ (θ∗) =
√

1
N−1

∑N
i=1(θ

∗
i − θ̄∗)2,

M̂SE θ̂(θ
∗) = 1

N−1

∑N
i=1(θ

∗
i − θ̄∗)2 + (θ̄∗ − θ̂)2.

The following diagram represents the bootstrap resampling method:

Empirical Bootstrap Bootstrap Bootstrap

distribution samples of size n replications of θ̂ estimates
{x1, . . . , xn}1 → θ∗1

F̂ {x1, . . . , xn}2 → θ∗2
{x1, . . . , xn} ...

...
...

{x1, . . . , xn}N → θ∗N ⇓

bias:

θ̄∗ − θ̂
variance:

1
N−1

∑N
i=1(θ

∗
i − θ̄∗)2

Example: sample mean and sample median
Let x1, . . . , xn be a realization of the i.i.d. r.vs X1, . . . , Xn with a c.d.f. F .
Consider θF = EF (Xi) and let θF̂ = X̄. We know that the sample mean X̄
is an unbiased estimator of E(Xi). What is the bootstrap bias of the mean?
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Biasθ̂(θ
∗) = EF̂ (θ∗)− θ̂ = EF̂ (X̄)− X̄ = 0

Is the estimate of the bootstrap bias of the sample mean, B̂iasθ̂(X̄), equal
to zero as well?

Let {2.3 3.4 2.5 3.2 2.7 2.6 3.1 3.5 2.9 2.5}

be a sample from a population with a c.d.f. F.

Here the sample mean is 2.87 and the sample median is 2.80.

15 bootstrap samples replicates of sample
mean median

{3.2 2.5 3.2 3.2 3.4 3.2 2.5 2.7 2.5 2.5} 2.89 2.95
{2.3 3.4 3.5 2.9 2.6 3.5 2.5 2.9 2.9 3.1} 2.96 2.90
{2.5 2.3 3.1 2.5 3.4 3.1 2.3 3.1 3.5 3.5} 2.93 3.10
{2.3 2.3 2.6 3.4 2.5 2.6 2.3 3.1 2.6 2.5} 2.62 2.55
{2.5 3.5 2.9 3.4 2.5 3.4 2.6 2.3 2.3 3.2} 2.86 2.75
{2.5 2.5 2.5 3.4 2.9 3.5 3.5 2.7 3.5 3.2} 3.02 3.05
{3.5 3.4 2.6 2.5 2.9 3.4 3.2 2.3 3.1 2.9} 2.98 3.00
{3.1 2.5 3.1 2.3 2.6 2.7 3.2 3.4 3.4 2.5} 2.88 2.90
{3.1 3.4 3.1 3.1 2.5 2.6 3.2 2.7 3.5 2.3} 2.95 3.10
{2.6 2.5 2.3 2.5 2.3 2.6 3.2 2.5 2.7 2.5} 2.57 2.50
{2.9 3.5 2.9 2.3 2.7 2.7 2.6 2.5 2.9 3.1} 2.81 2.80
{2.9 3.1 3.5 2.3 2.7 2.3 3.5 3.2 2.5 2.9} 2.89 2.90
{3.4 2.9 3.2 3.2 3.1 2.9 3.4 2.7 3.5 3.2} 3.15 3.20
{2.7 3.1 3.4 3.2 3.5 2.5 3.2 2.9 2.5 3.4} 3.04 3.15
{2.5 3.2 3.5 2.5 2.7 3.1 3.2 2.9 2.5 3.4} 2.95 3.00

The bootstrap estimate of the sample mean is the average of the replicates
θ∗i , that is

θ̄∗ =
1

15
(2.89 + 2.96 + 2.93 + . . . + 2.95) = 2.898

Hence, the estimate of bootstrap bias of the sample mean is

B̂iasθ̂(θ
∗) = θ̄∗ − θ̂ = 2.898− 2.87 = 0.098 6= 0.

So, the answer to the question if the estimate of the bootstrap bias of the

sample mean, B̂iasθ̂(X̄), is equal to zero, is GENERALLY NOT.
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Similar calculations for the above data and the bootstrap samples show that
the estimate of the bootstrap bias for the sample median is

B̂iasθ̂(θ
∗) = θ̄∗ − θ̂ = 2.916− 2.80 = 0.116

However, we do not know what is the true bias of the sample median, so we
do not know how good this estimate is.

The following question arises: How big should the bootstrap sample be to
get a high probability that the estimate of the bootstrap bias of an estimator
is close to the true value of the bias (known or unknown)?

The Central Limit Theorem says that the distribution of an average is ap-
proximately normal if the sample size is large and the variance is finite.
Applying it to the bootstrap replicates θ∗i we get

P

(
|θ̄∗ − EF̂ (θ∗)| < 2

ŝeF̂ (θ∗)√
N

)
∼= 0.95. (4.5)

This means

P

(
|B̂iasθ̂(θ

∗)−Biasθ̂(θ
∗)| < 2

ŝeF̂ (θ∗)√
N

)
∼= 0.95.

Hence, we need N such that 2
bseF̂ (θ∗)√

N
is very small, for example 0.001.

Example: The patch data (Efron, Tibshirani, 1993, page 127)
Eight subjects wore medical patches designed to increase the blood levels of
a certain natural hormone. Each subject had his blood levels of the hormone
measured after wearing three different patches: a placebo patch, which had
no medicine in it, an old patch which was from a lot manufactured at an
old plant, and a new patch, which was from a lot manufactured at a newly
opened plant. The purpose of the experiment was to show that the new
plant was producing patches equivalent to those from the old plant. The
observations are in the table below.
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subject placebo old patch new patch oldpatch - placebo newpatch - oldpatch
pi oldi newi zi = oldi − pi yi = newi − oldi

1 9243 17649 16499 8406 -1200
2 9671 12013 14614 2342 2601
3 11792 19979 17274 8187 -2705
4 13357 21816 23798 8459 1982
5 9055 13850 12560 4795 -1290
6 6290 9806 10157 3516 351
7 12412 17208 16570 4796 -638
8 18806 29044 26325 10238 -2719

mean: 6342 -452.3

The Food and Drug Administration (FDA) criterion for the bioequivalence is
that the expected value of the new patches match that of the old patches in
the sense that

|E(new)− E(old)|
E(old)− E(placebo)

6 0.2

This means that the new patch should match the old one within 20% of the
amount of hormone the old drug adds to placebo blood levels. Denote the
parameter of interest by θ, i.e.,

θ =
E(new)− E(old)

E(old)− E(placebo)

and let us assume that the pairs xi = (zi, yi) are realization of i.i.d. bivariate
r.vs Xi = (Zi, Yi) with unknown c.d.f. F . Then the parameter θ is

θ =
EF (Y )

EF (Z)
.

The natural estimator of θ is

θ̂ =
Ȳ

Z̄

and its value for the given observations is

θ̂ =
−452.3

6342
= −0.0713

whose absolute value is less then 0.2.

Below is GenStat program doing the calculations.
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scalar [8] ndata

scalar [2000] nboots

variate [nvalues=ndata] z ,y

read z

8406 2342 8187 8459 4795 3516 4796 10238:

read y

-1200 2601 -2705 1982 -1290 351 -638 -2719:

calc thetahat = mean(y)/mean(z)

variate [nvalues = nboots] thetastar

variate [nvalues = ndata] bootsample1, bootsample2, bootset

for i=1...nboots

calc seed=43*i+13

calc bootset = urand(seed)

calc bootset=int(ndata*bootset+1)

calc bootsample1$[1...ndata]= y$[bootset$[1...ndata]]

calc bootsample2$[1...ndata]= z$[bootset$[1...ndata]]

calc thetastar$[i]=mean(bootsample1)/mean(bootsample2)

endfor

hist thetastar

calc bootbias = mean(thetastar) - thetahat

calc bootvar = var(thetastar)

calc bootse = sqrt(bootvar)

print bootbias, bootvar, bootse, thetahat

calc a = 2*bootse/sqrt(nboots)

print a
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Here are the results:

Histogram of thetastar

-0.24 28 **

-0.24 - -0.16 292 ************************

-0.16 - -0.08 617 ***************************************************

-0.08 - 0.00 551 **********************************************

0.00 - 0.08 347 *****************************

0.08 - 0.16 108 *********

0.16 - 0.24 42 ****

0.24 - 0.32 14 *

0.32 - 0.40 1

0.40 - 0

bootbias bootvar bootse thetahat a

0.009905 0.01013 0.1007 -0.07131 0.004501

The value a is very small which indicates that the estimate of the bias is
good. Also, comparing the bootstrap estimate of the bias of an estimator to
the bootstrap estimate of its standard error gives some information on the
quality of the estimator. Here we have:

B̂iasθ̂(θ
∗)

ŝeF̂ (θ∗)
=

0.009905

0.1007
= 0.0983615,

which is rather small, again indicating a good estimate of the bias.

Now, we may correct our estimate of θ. By definition Biasθ(θ̂) = E(θ̂)− θ,
so a better estimate of the parameter might be

θ̂ − B̂iasθ̂(θ
∗) = −0.07131− 0.009905 = −0.081215

whose absolute value is still less than the maximum of 0.2 allowed for the
new patch to be considered equivalent to the old one.
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4.3 The Jackknife

The Jackknife is one of the oldest resampling methods. Here we get repli-
cations of an estimator θ̂ by constructing new samples simply omitting one
observation at a time. So, we get n samples of size n− 1. Here is the proce-
dure:

Empirical Jackknife Jackknife Jackknife
distribution samples of size n− 1 replications of θ̂ estimates of

{x2, x3, . . . , xn}∗ → θ∗(1)

F̂ {x1, x3 . . . , xn}∗ → θ∗(2)

{x1, . . . , xn}
...

...
...

{x1, . . . , xn−1}∗ → θ∗(n) ⇓
bias:
(n− 1)(θ̄∗ − θ̂)
where θ̄∗ = 1

n

∑n
i=1 θ∗(i)

variance:
n−1

n

∑n
i=1(θ

∗
(i) − θ̄∗)2

Here, θ∗(i) is calculated in the same way as θ̂ except that the i−th observation

is omitted. The Jackknife estimator of bias and variance of θ̂ are defined to
be:

Biasθ̂(θ
∗
Jack) = (n− 1)(θ̄∗ − θ̂) (4.6)

varθ̂(θ
∗
Jack) =

n− 1

n

n∑
i=1

(θ∗(i) − θ̄∗)2 (4.7)

For simple types of θ the Jackknife estimator can be calculated explicitly.

Example: Jackknife estimator of the mean and of its variance

Mean
Let θ be the expected value of a r.v. X with a c.d.f. F and let the estimator
of θ be the average of a random sample of size n, i.e., θ̂ = X̄. The Jackknife
replications of θ̂ are calculated as:

θ∗(i) =
1

n− 1

n∑

j=1,j 6=i

Xj.

Is the Jackknife estimate of bias of the mean equal to zero?

θ̄∗ =
1

n

n∑
i=1

θ∗(i) =
1

n

n∑
i=1

1

n− 1

n∑

j=1,j 6=i

Xj =
1

n

1

n− 1

n∑
i=1

n∑

j=1,j 6=i

Xj =
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1

n

1

n− 1
(n− 1)

n∑
i=1

Xi = X̄ = θ̂.

The Jackknife estimate of bias is

Biasθ̂(θ
∗
Jack) = (n− 1)(θ̄∗ − θ̂) = (n− 1)(X̄ − X̄) = 0.

Variance of the mean
Here we calculate the Jackknife variance of the mean.

varθ̂(θ
∗
Jack) =

n− 1

n

n∑
i=1

(θ∗(i) − θ̄∗)2 =
n− 1

n

n∑
i=1

(
1

n− 1

n∑

j=1,j 6=i

Xj − X̄

)2

=

n− 1

n

n∑
i=1

(
1

n− 1
(nX̄ −Xi)− X̄

)2

=
n− 1

n

n∑
i=1

(X̄ −Xi)
2

(n− 1)2
=

1

n(n− 1)

n∑
i=1

(Xi − X̄)2 =
1

n
S2.

So, the Jackknife estimator of the variance of the mean is the familiar one.

Example: Opinion survey
An opinion survey asked a random sample of 200 people a yes/no question
of whom 75 answered yes. The estimate of the population proportion p of
those who would answer yes is estimated as p̂ = 75

200
= 3

8
. A social science

researcher is interested in a parameter

θ = p(1− p) = pq.

A natural estimate of the parameter is

θ̂ = p̂q̂ =
3

8

5

8
∼= 0.2344.

Is the estimator θ̂ = p̂q̂ biased?

If we knew that the probability of answering yes is the same for each per-
son, then we could use the Bernoulli(p) distribution and calculate the bias.
However, it may be rather unlikely that all people have the same attitude to
the questioned problem and so this assumption may not be feasible. Then a
non-parametric method can help. Here, we calculate the Jackknife estimate
of bias of θ̂ = p̂q̂.
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Let a random variable Xi have two values: 1 if the answer is yes and 0 if the
answer is no. Then the sum

n∑
i=1

Xi

is the number of yes answers in the survey. Also, note that

np̂ =
n∑

i=1

Xi.

Then the i-th Jackknife replication of θ̂, which is based on the sample of size
n− 1, can be written as

θ∗(i) =

{ np̂−1
n−1

(
1− np̂−1

n−1

)
if Xi = 1

np̂
n−1

(
1− np̂

n−1

)
if Xi = 0.

So, we have

θ̄∗ =
1

n

n∑
i=1

θ∗(i) =
1

n

[
np̂

np̂− 1

n− 1

(
1− np̂− 1

n− 1

)
+ (n− np̂)

np̂

n− 1

(
1− np̂

n− 1

)]

Note that in the above formula np̂ is the number of ones and n − np̂ is the
number of zeros. Simplifying the above formula we get

θ̄∗ =
n(n− 2)

(n− 1)2
p̂(1− p̂) =

n(n− 2)

(n− 1)2
p̂q̂.

Hence, the Jackknife estimator of bias of parameter θ̂ is

Biasθ̂(θ
∗
Jack) = (n−1)(θ̄∗−θ̂) = (n−1)

(
n(n− 2)

(n− 1)2
p̂q̂ − p̂q̂

)
= − p̂q̂

n− 1
= − θ̂

n− 1
.

So, in our example we get

B̂iasθ̂(θ
∗
Jack) = − 1

199
× 0.2344 ∼= −0.0012.

Now we may correct the initial estimate of θ by the estimate of the bias to
obtain

θ̂new = 0.2344− (−0.0012) = 0.2356.
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4.4 The parametric bootstrap

The parametric bootstrap is a useful method for bias and variance estimation
when we know that the sample comes from a population with a c.d.f. F ,
which is a member of a parametric family of distributions indexed by an
unknown parameter, or set of parameters, φ:

F ∈ {Fφ : φ ∈ Φ}.

For example

• F belongs to the family of normal distributions, i.e.,

F ∈ {F(µ,σ2) : µ ∈ R, σ2 ∈ R+},

where F(µ,σ2) is a c.d.f. of a normal r.v. with expected value µ and
variance σ2. Here φ = (µ, σ2).

• F belongs to the family of exponential distributions, i.e.,

F ∈ {Fλ : λ > 0},

where Fλ is a c.d.f. of an exponential r.v. Here φ = λ.

In such situation, the empirical distribution F̂ is a member of the family with
parameter φ̂ - an estimate of φ. Hence, to calculate bias and variance of some
parameter θ we simulate bootstrap samples from the empirical distribution
F̂ ≡ Fφ̂ and calculate bootstrap replications of θ̂. Note that θ may be the
same as φ, but is may also be a function of φ. The idea of the procedure of
the parametric bootstrap is given below:

True Empirical Simulated
distribution distribution distribution

Fφ
−−−−−−−−−→
data, est.ofφ Fφ̂

−−−−−−−−−−−−→
samplingfromFφ̂ F ∗

φ̂

↓ ↓ ↓
θFφ

θFφ̂
θF ∗φ̂
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Example: Empirical exponential distribution
LetXi ∼ Exp(λ), for all i = 1, . . . , n, where λ is unknown. The c.d.f. F and
the density function f of an exponential r.v. are following:

F (x) =

{
0 if x 6 0
1− e−λx if x > 0

f(x) =

{
0 if x 6 0
λe−λx if x > 0

We know that E(Xi) = 1
λ

and X̄ is an unbiased estimator of 1
λ
. Hence, λ̂ = 1

x̄

may be used to get the empirical distribution, i.e., Fλ̂ = F 1
x̄
. So, we may

generate samples from Exp( 1
x̄
). Next section explains how to do it.

4.4.1 Simulation of random variables

Continuous random variables

Lemma 4.1 (See Lemma 3.1)
Let F̃ be a c.d.f. of a continuous r.v. and let U ∼ Uniform[0, 1]. Random
variable Z = F̃−1(U) has the c.d.f. F̃ .

Proof
We want to show that P (Z 6 z) = F̃ (z).

P (Z 6 z) = P (F̃−1(U) < z) = P
(
F̃ (F̃−1(U)) < F̃ (z)

)
= P (U < F̃ (z)).

Now, 0 6 F̃ (z) 6 1 and P (U 6 u) = u if u ∈ [0, 1]. So,

P (U 6 F̃ (z)) = F̃ (z)

and

P
(
F̃−1(U) 6 F̃−1(F̃ (z))

)
= F̃ (z)

That is

P (Z 6 z) = F̃ (z).

¤

GenStat, like many statistical packages, simulates independent observations
of the r.v. U ∼ Uniform[0, 1]. The directive is URAND(seed).
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Suppose we need simulations of a continuous r.v. Z with a c.d.f. F . We
obtain simulations of uniform r.v. U and transform it to Z = F−1(U).

Another GenStat command GRANDOM may be used for simulation of sam-
ples from populations with some distributions.

Example: Simulating exponential distribution
Let Z ∼ Exp(λ). Put

u = 1− e−λz.

Then

z = −1

λ
ln(1− u).

So,

Z = F−1
λ (u) = −1

λ
ln(1− u).

Hence, we simulate u from the uniform distribution on interval [0, 1] and
calculate z = − 1

λ
ln(1− u).

Assume that we do not know λ, but we have an estimate λ̂ = 2. Check
that for the following independent values of the uniform r.v. U we get the
respective values of the Exp(2) r.v. Z:

u z
0.6317 0.5068
0.1897 0.1052
0.1824 0.1007
0.9322 1.3455
0.4338 0.2844
0.5839 0.4374

Discrete random variables

1. Z ∼ Bernoulli(p)

z 1 0
P (Z = z) p 1− p

Generate u from Uniform[0, 1] and put z = h(u) =

{
1 if u 6 p
0 if u > p
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2. Z ∼ Binomial(n, p)

Z is a sum of n independent Bernoulli(p) r.vs so, we generate u1, . . . , un,
all from Uniform[0, 1] and put Z =

∑n
i=1 h(ui).

3. Z ∼ Discrete Uniform
z 0 1 . . . k

P (Z = z) 1
k

1
k

. . . 1
k

Generate u from Uniform[0, 1] and put z = h(u) = int(ku).

4.4.2 Example: parametric bootstrap

An electronic component is known to have a useful life represented by an
exponential density with rate λ failures per hour. The mean time to failure
is thus E(X) = 1

λ
. A series of 100 observations gave an estimate of the mean

x̄ = 50 hours. There were 35 components which had a shorter life than a
day. An engineer is interested in the fraction of the components that would
fail in less than 24 hours.

Examine the GenStat output given below and answer the following questions:

1. What is the parameter of interest to the engineer?

2. What method is used to improve the initial estimate of the parameter?
Explain why this method is used.

3. Briefly describe the purpose of the commands in lines

• 1 - 5

• 6

• 7 - 10

• 11 - 12

• 13 - 19

4. Comment on the results of the output.

GenStat output:

1 scalar [100] ndata

2 scalar [500] nboots

3 variate [nvalues = nboots] thetastar

4 pointer [nvalues=nboots] bsamplep
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5 variate [nvalues=ndata] bsamplep[]

6 calc thetahat = 0.35

7 for i=1...nboots

8 calc s = 2*i+5

9 GRANDOM [DISTRIBUTION=exponential; NVALUES=100; SEED=s;\

MEAN=50; VARIANCE=2500] bsamplep[i]

10 endfor

11 calc thetastar$[1...nboots] = 1-exp((-1/mean(bsamplep[]))*24)

12 histogram thetastar

Histogram of thetastar

- 0.275 0

0.275 - 0.300 1

0.300 - 0.325 6 **

0.325 - 0.350 49 ************

0.350 - 0.375 128 ********************************

0.375 - 0.400 163 *****************************************

0.400 - 0.425 96 ************************

0.425 - 0.450 45 ***********

0.450 - 0.475 10 ***

0.475 - 2 *

13 calc bootheta = mean(thetastar)

14 calculate bootbias = bootheta - thetahat

15 calculate bootvar = var(thetastar)

16 calc bootse = sqrt(bootvar)

17 calc a = bootbias/bootse

18 calc newtheta = thetahat - bootbias

19 print bootheta, thetahat, bootbias, bootse, a, newtheta

bootheta thetahat bootbias bootse a newtheta

0.3866 0.3500 0.03661 0.03020 1.212 0.3134

Here are the answers to the above questions:

1. The parameter of interest is θ = P (X < 24), where X ∼ Exp(λ).

2. The method is ’parametric bootstrap’. It is used because we know
what parametric family of distributions is involved, although we do
not know the value of the parameter which indexes the family, i.e., we
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do not know λ. However, we have an estimate of λ and we may simulate
values of the parameter of interest θ from the empirical distribution.

3. Lines 1 - 5 declare scalars and pointers.

4. Line 6 assigns value 0.35 to the initial estimate of θ.

5. Lines 7 -10 generate random samples of size 100 from the exponential
distribution with mean 50 and save them in variables bsamplep[i]. This
is done 500 times in the loop FOR.

6. Lines 11 - 12 calculate replications of the estimate of the parameter θ,

i.e., ̂P (X < 24) = θ∗i = 1 − e
− 1

x̄∗
i
24

for the samples from Exp( 1
x̄
) and

draw a histogram of the estimates.

7. Lines 13 - 19:

• line 13 calculates the average of the bootstrap replications of θ̂,
i.e., θ̄∗;

• lines 14, 15 and 16 calculate bootstrap estimates of bias; variance
and standard error of θ̂, respectively;

• line 17 calculates the ratio of the bootstrap estimates of bias and
standard error;

• line 18 calculates the corrected value of the estimate;

• line 19 prints out the calculated values.

8. The histogram of the replications θ∗i and the calculated bootstrap bias
show that the initial estimate may not be accurate, or the empirical
distribution is not quite right.

4.5 The smoothed bootstrap

In the simple nonparametric bootstrap we have assumed that the empiri-
cal distribution assigning equal mass to each observation, F̂ , is a suitable
estimate of F . However, F̂ is discrete and it is natural to ask if a smooth es-
timate of F might be better, particularly when we expect F to be continuous.

F̂ is the c.d.f. which places an atom of probability with mass 1
n

to each data
point. Smoothing consists of replacing each data point with a continuous dis-
tribution of total mass 1

n
centered at the point. The most common smoothing
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Xi X

F

Figure 4.1: Smoothing the empirical distribution function.

distribution is uniform on interval [−h, h]. The uniformly smoothed empir-
ical c.d.f. F̂U is similar to F̂ except that the jumps of size 1

n
at each data

point are replaced by straight lines with slope 1
2nh

which pass through the
midpoint of the jump. See Figure (4.1).

Another common smoothing distribution is N(xi, h
2).

In any case, there is the question of the choice of h. If it is too small, then
the resulting distribution will not be very smooth, if it is too large, then
the smoothed portions overlap and we loose information given in the original
data.

Simulation from F̂U proceeds in two stages:

1. generate a bootstrap sample in the usual way,

2. add a simulated r.v. from Uniform[−h, h] to each member of the
bootstrap sample.

Then calculate bias and variance of and estimator θ as in the simple boot-
strap.

4.6 The balanced bootstrap

Since bootstrap samples are chosen randomly and independently, ’unrepre-
sentative’ collections of samples may occur, that is some values may occur
many more times than other. In a balanced bootstrap, each of the n observa-
tions is constrained to occur exactly N times in the N samples. Hence, each
bootstrap sample is a random sample from F̂ but the samples are no longer



58 CHAPTER 4. RESAMPLING METHODS

independent (for example, knowing the first N − 1 samples tell us what the
Nth sample must be).

To implement a balanced bootstrap we need a random permutation of the
vector

(1, 1, . . . , 1, 2, 2, . . . , 2, . . . , n, n, . . . , n)′

In the randomized vector we use the first n entries to index the first bootstrap
sample, the next n entries to index the second bootstrap sample, and so on.
For example, let n = 10 and N = 2 and let the sample from a population be
(see Practical 6) :

9.6 10.4 13.0 15.0 16.6 17.2 17.3 21.8 24.0 33.8

The randomized vector might be

(2, 2, 3, 8, 4, 6, 1, 9, 7, 4, 5, 6, 1, 5, 8, 9, 3, 10, 10, 7)′

which gives the following two bootstrap samples:

10.4 10.4 13.0 21.8 16.6 17.2 9.6 24.0 17.3 15.0

16.6 17.2 9.6 16.6 21.8 24.0 13.0 33.8 33.8 17.3

Using the frequencies of occurrence we may put the bootstrap samples in the
following table:

data 9.6 10.4 13.0 15.0 16.6 17.2 17.3 21.8 24.0 33.8
frequencies 1 2 1 2 0 1 1 1 1 0
frequencies 1 0 1 0 2 1 1 1 1 2

Now, consider θ̂ = X̄. The value of the estimator obtained from the original
sample is x̄ = 17.87, the bootstrap replications of the estimate are: x̄∗1 =
15.37 and x̄∗2 = 20.37 which give the mean of x̄∗ = 17.87. The balanced
bootstrap forces the average value of θ∗i = x̄∗i to be the same as the value of
θ̂ = X̄.
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4.7 Bootstrapping bivariate data

Suppose we have bivariate data (x1, y1), (x2, y2), . . . , (xn, yn), a sample of
bivariate i.i.d. random variables (X1, Y1), (X2, Y2), . . . , (Xn, Yn) each with
the same c.d.f. FX,Y . The way of bootstrapping this kind of data depends
on what we know about the relationship between X and Y .

4.7.1 Non-parametric bootstrap

This method is appropriate when the pairs (xi, yi) are the random sample,
we have no prior control over the values of r.vs X and Y and the model of
Y in terms of X is either unknown or theoretically untractable.

Bootstrapping:

• For each bootstrap sample randomly choose n numbers ji, j2, . . . , jn

from {1, 2, . . . , n} with replacement.

• Then, the bootstrap sample consists on the pairs (xj1 , yj1), (xj2 , yj2), . . . , (xjn , yjn)
(x and y get bootstrapped together).

• Calculate the replications of the parameter estimate for each bootstrap
sample and average the replications.

4.7.2 Fully parametric bootstrap

Suppose we know that
Yi = f(Xi, ψ) + εi,

where the r.v. ε follows a distribution which belongs to a known parametric
family of distributions. For example

Yi = α + βXi + εi, εi ∼ N(0, σ2).

However, we neither know the values of the parameters ψ nor the error dis-
tribution parameters (α, β, σ2 in the example). If we can control the values
of r.v. X then we obtain a bootstrap sample by fixing each value xi and
simulating yi from the fitted model Ŷi. For example from

N(α̂ + β̂xi, σ̂
2),

where α̂, β̂and σ̂2 are preliminary estimates of the parameters.

Here we fit the model to the observed data, then simulate random samples
from the fitted model, and refit the model with the simulated samples.
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4.7.3 Semi-parametric bootstrap

Suppose that we know the expected model, i.e., E(Yi) = f(Xi, ψ) up to
the model parameters ψ but we do not know the distribution of the errors
Yi − E(Yi). If we can control the values of X then we can bootstrap in the
following way:

• Estimate the parameters ψ and obtain the residuals ri = yi − Ê(Yi).

• Fix the xi values and bootstrap the residuals, i.e., randomly choose
n numbers ji, j2, . . . , jn from {1, 2, . . . , n} with replacement and put

(xi, Ê(Yi) + rji
) for i = 1, . . . , n as a bootstrap bivariate sample.

Here we fit the expectation part of the model, then resample with replace-
ment from the residuals, add the resampled residuals to the fitted expectation
to get bootstrap samples, to which we refit the model.

Example of semi-parametric bootstrap
In recent years, physicians used the dividing reflex to reduce abnormally
rapid heartbeats in humans by briefly submerging the patient’s face in cold
water. The reflex, triggered by cold water temperatures, is an involuntary
neural response that shuts off circulation to the skin, muscles, and internal
organs and diverts extra oxygen-carrying blood to the heart, lungs and brain.
A research physician conducted an experiment to investigate the effects of
various cold water temperatures on the pulse rate of small children. From
his earlier experience, the physician knew that the expected pulse rate may
be modeled as a linear function of water temperature, however he had no
information about the measurement error distribution.

The relationship between X (water temperature) and Y (pulse rate) is as-
sumed to be linear, so

E(Y ) = α + βX.

However, there is no information about the error distribution. We will use
semi-parametric bootstrap.

The following GenStat program calculates bootstrap approximation of bias
and of variance of the estimators of the slope β and the intersection α. Initial
estimates are calculated (given in the output) and used to obtain residuals.
The residuals are bootstrapped and the fitted values are corrected by the
residuals. Then, the bootstrap replications of the estimates of the slope
and the intersection are calculated. Finally the bias and the variance are
obtained.
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1 scalar [7] ndata

2 scalar [1000] nboots

3 variate [nvalues=ndata] pulse, temp

4 read pulse

Identifier Minimum Mean Maximum Values Missing

pulse 55.00 63.43 72.00 7 0

5 read temp

Identifier Minimum Mean Maximum Values Missing

temp 1.000 7.000 13.00 7 0

6 graph x=temp; y=pulse

I
I
I *

70.0 I
I * *
I
I *
I
I

60.0 I
I *
I *
I *
I
I

50.0 I
-+---------+---------+---------+---------+---------+---------+---
0.0 2.5 5.0 7.5 10.0 12.5 15.0

pulse v. temp using symbol *

7 model pulse

8 fit temp

***** Regression Analysis *****

Response variate: pulse

Fitted terms: Constant, temp
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*** Summary of analysis ***

d.f. s.s. m.s. v.r.

Regression 1 258.04 258.036 110.47

Residual 5 11.68 2.336

Total 6 269.71 44.952

Percentage variance accounted for 94.8

Standard error of observations is estimated to be 1.53

*** Estimates of parameters ***

estimate s.e. t(5)

Constant 52.80 1.16 45.35

temp 1.518 0.144 10.51

9 scalar slophat, inthat

10 rkeep fittedvalues = f

11 rkeep estimates = e

12 calc resid = pulse - f

13 calc inthat = e$[1]

14 calc slophat = e$[2]

15 print inthat, slophat

inthat slophat

52.80 1.518

16 variate [nvalues = nboots] slopstar, intstar

17 matrix [rows=nboots; columns = ndata] bootmat

18 pointer [nvalues=nboots] bootsubp, bootpulp

19 variate [nvalues=ndata] bootsubp[], bootpulp[]

20 calculate bootmat = urand(131)

21 calculate bootmat = int(ndata*bootmat +1)

22 equate bootmat; bootsubp

23 calculate bootpulp[] = f + resid$[bootsubp[]]

24 for i=1...nboots

25 model bootpulp[i]

26 fit [print = *] temp

27 rkeep estimates = e

28 calc intstar$[i] = e$[1]

29 calc slopstar$[i] = e$[2]

30 endfor
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31 hist intstar

Histogram of intstar

- 49.6 0

49.6 - 50.4 8 *

50.4 - 51.2 43 *******

51.2 - 52.0 157 **************************

52.0 - 52.8 258 *******************************************

52.8 - 53.6 290 ************************************************

53.6 - 54.4 188 *******************************

54.4 - 55.2 54 *********

55.2 - 56.0 2

56.0 - 0

Scale: 1 asterisk represents 6 units.

32 hist slopstar

Histogram of slopstar

- 1.1 0

1.1 - 1.2 2

1.2 - 1.3 40 *******

1.3 - 1.4 144 ************************

1.4 - 1.5 264 ********************************************

1.5 - 1.6 300 **************************************************

1.6 - 1.7 190 ********************************

1.7 - 1.8 50 ********

1.8 - 1.9 8 *

1.9 - 2

Scale: 1 asterisk represents 6 units.

33 calc slopbias = mean(slopstar) - slophat

34 calc slopvar = var(slopstar)

35 calc slopse = sqrt(slopvar)

36 print slopbias, slopvar, slopse

slopbias slopvar slopse

-0.004125 0.01512 0.1229
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37 calc intbias = mean(intstar) - inthat

38 calc intvar = var(intstar)

39 calc intse = sqrt(intvar)

40 print intbias, intvar, intse

intbias intvar intse

0.05197 0.9856 0.9928

4.7.4 Summary of the bivariate bootstrap

Relationship X controlled X not controlled
between X and Y
known apart from regression or GLM or bootstrap xi, then
the parameters parametric bootstrap do parametric bootstrap
E(Yi) known apart fix the xi and bootstrap xi, then
from the parameters bootstrap the residuals bootstrap the residuals

bootstrap the pairs
unknown ? (xi, yi)

So far we have used the bootstrap method to assess the properties of estima-
tors based on a random sample. However, a major advantage of the bootstrap
is that it can be used in an enormous range of statistical problems, including
very complicated ones.

For a complicated statistical model involving many random variables, it is
important to distinguish between:

1. non-parametric bootstrap in which we sample with replacement from all
the data and estimate unknown parameters for each bootstrap sample,

2. fully parametric boostrap in which we fit the model to the observed
data, then simulate random sample from the fitted model and finally
refit the model to the simulated samples,

3. semi-parametric bootstrap in which we fit the expectation part of the
model, then resample with replacement from the residuals, adding the
resampled residuals to the fitted expectation to get new samples, to
which we refit the model.

The distinction between the three cases is what we can assume. In the fully
parametric bootstrap we must be prepared to assume that the statistical
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model is valid for some values of the parameters: the only problem is to find
these values. In the semi-parametric bootstrap we must assume that the ex-
pectation part of the model is valid, but need not assume anything about the
distribution of errors. In the non-parametric bootstrap we need not assume
that any part of the model is valid.

If the whole model is valid then the parametric bootstrap will give better
estimates.

There is no invariant formula for deciding which method to apply. It is a
question of the statistician’s judgement based on understanding the model
and the underlying phenomenon.

4.8 Cross-validation

When a statistical model has been fitted to data, a good way to test the
goodness-of-fit is to assess how well the model predicts any future data.
However, often there is no additional data available. If future data become
available, it is desirable to refit the model to all data.

Cross-validation provides methods of making use of all the data both to fit
the model and to assess the goodness-of-fit. These are resampling methods,
computer intensive, requiring refitting the model many times.

Method 1: leave-one-out samples
For each i in turn, omit the i−th datum, fit the model to the n−1 remaining
data and use the fitted model to predict the outcome at the i− th point.

The cross-validation residual is

ri = predicted value at the i−th point − actual outcome at the the i−th point.

If the model fits well, then
n∑

i=1

r2
i

will be small. To choose between two models, choose the one with the smaller
value of

∑n
i=1 r2

i .

Method 2: construction and test samples
Randomly divide the observed data into two sets: the construction sample



66 CHAPTER 4. RESAMPLING METHODS

0.5 3.0 5.5 8.0 10.5 13.0 15.5 X

0.1

0.2

0.3

0.4

Y

Figure 4.2: Method 2 of cross-validation: open blue circles - construction
sample, cross - test sample, solid red points - prediction of the test sample

and the test sample. Fit the model with the construction sample, then test
the goodness-of-fit with the test sample. Use the explanatory variables of
the test sample to predict the outcomes from the fitted model, then compare
them with the observed outcomes. Repeat the procedure, with new random
division into construction and test samples, so that every observed data point
will occur several times in both construction and test samples.


