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3. Bootstrapping
I was still a couple of miles above the clouds when it broke, and with such violence I fell to the ground that I found myself stunned, and in a hole nine fathoms under the grass, when I recovered, hardly knowing how to get out again. Looking down, I observed that I had on a pair of boots with exceptionally sturdy straps. Grasping them firmly, I pulled with all my might. Soon I had hoist myself to the top and stepped out on terra firma without further ado.

--With acknowledgement to 

             R. E. Raspe, Singular Travels, Campaigns and Adventures of Baron Munchausen, 1786.

"The Probability Approach in Econometrics"

In his famous and influential monograph, The Probability Approach in Econometrics, Haavelmo  laid the foundations for the formulation of stochastic econometric models and an approach which has dominated our discipline to this day.
  He wrote:



... we shall find that two individuals, or the same individual in two different time periods, may be confronted with exactly the same set of specified influencing factors [and, hence, they have the same y*, ...], and still the two individuals may have different quantities y, neither of which may be equal to y*.  We may try to remove such discrepancies by introducing more “explaining” factors, x.  But, usually, we shall soon exhaust the number of factors which could be considered as common to all individuals, and which, at the same time, were not merely of negligible influence upon y.  The discrepancies y - y* for each individual may depend upon a great variety of factors, these factors may be different from one individual to another, and they may vary with time for each individual.  (Haavelmo op. cit., p. 50).


And further that:



... the class of populations we are dealing with does not consist of an infinity of different individuals, it consists of an infinity of possible decisions which might be taken with respect to the value of y.


... we find justification for applying them [stochastic approximations] to economic phenomena also in the fact we usually deal only with ( and are interested only in ( total or average effects of many individual decisions, which are partly guided by common factors, partly by individual specific factors ... (Haavelmo, op. cit, pp. 51 and 56).

Marschak  further amplified Haavelmo’s themes in his introductions to Cowles Commission Monographs 10 and 14,
 observing that:


The numerous causes that determine the error incurred ... are not listed separately; instead their joint effect is represented by the probability distribution of the error, a random variable (op. cit.,1950, p. 18) [, which] ... is called `disturbance’ or `shock,’ and can be regarded as the joint effect of numerous separately insignificant variables that we are unable or unwilling to specify but presume to the independent of observable exogenous variables.  (op. cit., 1953, p. 12).


In the imaginary world of classical statistics, experiments may be repeated ad infinitum. What Haavelmo and Marschak are attempting to do is to link this world with the real world of economic phenomena and behavior. Marschak goes even further in attempting to provide, via a law of large numbers argument, a justification for the parametric use of the normal distribution. In this classical world, hypotheses are specified parametrically and we seek estimates of some or all of the parameters of the process supposed to generate the observed data (DGP = data generating process), i.e., functions of the sample observations. The problem of inference from the sample data can then be couched in terms of determining the probability distributions of the estimates.
 Often we can't do this analytically despite having specified the DGP parametrically, including its stochastic component, and we are forced to rely on asymptotic arguments to characterize the distributions of estimates, and, in particular to reduce the discussion to first and second moments on the assumption these exist.
 The bootstrap (Efron's, not Munchausen's) offers an essentially nonparametric way to resolve this problem.
 Nonetheless it should be viewed in the context of imaginary world of classical statistics, as adventuresome a procedure as any of Baron Munchausen's improbable tales.

Bootstrap Basics

The central idea of bootstrapping is to use the information at hand, namely the sample itself, to determine the distribution we seek  --thus the name given to the body of procedures all of which involve a technique known as resampling. 


Suppose we are trying to determine a value for the parameter ( of the DPG for a RV x, say the mean of the PDF of x. We draw a sample {x1,...,xn}; a  natural estimate of the mean of the PDF, (,  is the sample mean, 
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. If we want to test some hypothesis about (, for example that it is zero, we need to know the PDF of 
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. If the distribution from which the sample of x's is drawn is normal with mean ( and variance (2 and if the x's are independently drawn, then, as we know, the distribution of 
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is also normal with mean ( and variance  (2/n. If we knew (2, we could use this fact to test the hypothesis that ( = 0 because the distribution of 
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 would then be completely known. If we didn't know (2, we could make use of the fact that 
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 are independently distributed (their joint distribution is the product of their marginals) and 
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[image: image8.wmf](

)

/

(

/

)

[

/

(

/

)]

/

(

)

(

)

/

(

)

\

x

n

s

n

n

x

s

n

-

-

=

-

-

q

s

s

q

2

2

2

2

2

2

1

1

 has an F-distribution with 1 and n-1 degrees of freedom, and thus  
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 has a t-distribution with n-1 degrees of freedom. The later could be used as a test statistic for any particular hypothesis about (.


The  idea of the bootstrap is to obtain an empirical distribution function (EDF) for the statistic in question from the actual sample at hand. Whereas in Monte Carlo experimentation all knowledge is a priori, in the bootstrap empirical information is available in the form of the actual data. The problem is how to use it. In Monte Carlo, we assume a parametric form for the model including the stochastic part of the DGP, then repeatedly generate samples and compute the statistic or statistics in which we are interested; the distribution of these statistics is then used to evaluate the statistic as an estimate of the parameter or parameters. In the bootstrap we are also concerned to find the distribution of  statistics which estimate one or more parameters in which we are interested, but now not to evaluate the estimator as a method but rather to test some hypothesis about the parameters. The bootstrap obtains the EDF from data by treating the sample as if it were the  population and resampling in order to simulate the distribution of the statistic of interest. The DGP as a whole is not varied, only the stochastic component is simulated: a linear regression equation stays a linear regression equation. Monte Carlo requires full knowledge, or assumed full knowledge, of the entire DGP. In the bootstrap we may have some a priori knowledge of the stochastic component of the DGP or we may be completely ignorant except insofar as the sample reveals its properties. The easiest form of the bootstrap to explain is the bootstrap with no prior knowledge. To obtain an "estimate" of the PDF of the stochastic component of the DGP we draw a large number of "resamples" from the original set of observations with replacement; each of the original observations is chosen independently of any other in the resample; thus, in general, in a particular resample some of the original observations will not appear at all and some will appear more than once. We do such resampling a large number of times, B; each time we compute an estimate 
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, b = 1,...,b. using these estimates we construct an empirical distribution function, 
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. How well does this estimate the true but unknown distribution  
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? The answer is, in general quite well as B increases; Efron (1993) argues that 200 - 500 resamples are sufficient for most purposes, at least for independent and identically distributed data. But this is not enough. It is also necessary to have sufficiently rapid convergence for the confidence intervals, measures of bias and so forth to be good approximations for reasonable numbers of resamples.
 The convergence of  
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should also be reflected in a convergence of 
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so that the parameter and the estimate must be sufficiently smooth functions of the distribution and the data. Efron (1982) gives the proof for the case in which the observed data can take on only a finite number of discrete values. Hall (1994) gives a detailed and careful discussion. One way to think about the matter is that the EDF is a maximum likelihood estimate of 
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in the absence of prior information on F.


Example 4: Sampling from a normal distribution. The following example, programmed in boot01.gss, illustrates the principles involved by bootstrapping the sample mean and sample variance estimate in the case of independent observations from a normal distribution for which the results are known. 


The program can be downloaded from our web site: http://www.arec.umd.edu/montecarlo/mc.htm. You can run in GAUSS it to obtain graphs and other output. 


In the example, I generate a sample of size 30 from a normal distribution with mean 5 and variance 2. The sample has mean 5.09 and variance 1.84. Standard statistical theory tells us that the sample mean, 
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, is distributed normally with mean 5 (or 
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 - 5 with mean 0) and variance 2/30 = 0.067. We also know that 
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  is distributed as (2 with 1 degree of freedom and thus with mean 29 and variance 58. The program resamples the sample of size 30, with replacement, 10,000 times. Of course each time the program runs, we will get different answers; despite the large number of bootstrap replications, these are somewhat variable, more so for the estimates of the variance than for the sample mean. My results for one particular run were as follows:






Example 4

Item
Mean over bootstrap replications
Variance over bootstrap replications
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28.8636
33.3240

The graphs show clearly that the mean of the distribution of the sample mean is being well estimated by the bootstrap but that the variance is underestimated. This is reflected in the distribution of the sample variance, which is not well approximated by a bootstrap replications, by (2  with the right variance. (But note that the variance is also underestimated in the particular sample drawn.)  The lesson to be drawn is that if the sample at hand to which the bootstrap is applies is not representative, no number of bootstrap replications can make up for this defect. The most that the bootstrap can do is to represent accurately the variability and properties present in  the sample data. This fact makes a priori knowledge about the distribution from which the sample must have been drawn and its incorporation in the bootstrap method all the more valuable.

Example 5: Sampling from a Cauchy Distribution. In boot02.gss, I use a sample of size 30 drawn from a modified standard Cauchy distribution.
 The purpose of this exercise is to illustrate the effects of extreme non-normality (very thick tails) on the bootstrap estimates of the EDFs of the sample mean , the sample variance and the sample median. I generated 30 sample observation from the standard Cauchy using the GAUSS program:



u = rndn(samplesz,1); v = rndn(samplesz,1);



y = u ./ v;



x = 5 + sqrt(2)*y; 

These data would have population mean 5 but infinite variance. (If y were distributed n(0,1), however, x would have variance 2.) For the particular sample I used, 


Original Sample: mean =   3.1551
    variance =  57.8533
   median =   4.6330
Note that the mean is rather unrepresentative but that the median is much closer to where it should be Not surprisingly, the sample variance is huge. 


Again I resampled samples of size 30 10,000 times. The results of one particular run were as follows:

DISTRIBUTION OF BOOTSTRAP MEAN:

mean bootstrap means =   3.1744   variance bootstrap means =   1.7993  median bootstrap means =   3.2556

mean bootstrap medians =   5.3461


DISTRIBUTION OF BOOTSTRAP VARIANCE (
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 EMBED Equation  [image: image26.wmf]$
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 is the sample variance of the original 30 sample observations):

Mean of normalized variance estimate =    27.9904
   Variance of  normalized variance estimate =    197.039


DISTRIBUTION OF BOOTSTRAP MEDIAN:

maximum bootstrap medians =    7.06065
   minimum bootstrap medians =    -0.9054
 

Mean of bootstrap medians =       4.81871
   Variance of bootstrap medians =  0.369573


median of bootstrap median =      4.7862

It is interesting to compare the distribution of the bootstrap median with the theoretical asymptotic result:
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where f( ) is the density of x.
 This asymptotic approximation yields a variance of  0.0822 at the true median of the distribution used to generate the data and 71.9651 at the median of the sample data on which the bootstrap estimates are based. In fact the empirical variance of the bootstrap medians is 0.3696. The graphs reveal a bootstrap distribution of the mean which is not far from normal and centered on the true mean. The distribution of the bootstrap variance, however, is clearly not (2 -- the variance is far too  big for that, although the distribution is centered  near 29, at 28. Both the median and the mean of the bootstrap medians are close to 5, the true median.

Example 6: Sampling from a Bimodal Distribution. In this example, I construct a bimodal distribution by mixing two lognormal distributions with different means and variances. Details are given in lognor.gss. Despite the clearly bimodal character of the theoretical distribution, the empirical distribution does not appear to be bimodal. A sample of size 30 was drawn from this distribution and used in the resampling results generated by boot03.gss. These are as follows for a recent run:

boot03.gss run on:  2/19/98  at   22:53:26

---------------------------------------------------------------------------------------------------------------------------------

Population values:

Mean of the mixture = 8.44912
  Median of the mixture = 6.9672
  Variance of the mixture = 21.7645


Density at the median of the mixed distribution = 0.0315675

Values for this sample: mean x =  13.0080
   variance =  35.7130
  median  =  11.8228


Number of bootstrap repetitions =    10000


---------------------------------------------------------------------------------------------------------------------------------

DISTRIBUTION OF BOOTSTRAP MEAN:

Mean bootstrap estimates: meanbar =  12.8981
  varbar =  32.2704
  mednbar =  11.8745


Mean of normalized estimates = -0.0183871
  Variance of normalized estimates =  0.0299964


---------------------------------------------------------------------------------------------------------------------------------

DISTRIBUTION OF BOOTSTRAP MEDIAN:

maximum bootstrap median =    16.5111
   minimum bootstrap median =     7.7214


Mean of bootstrap median =  11.8745
  Variance of bootstrap median =  1.42601


median of bootstrap median =  11.8228


lognormal  1:

theta1 =   1.25
  sigma1 =      1


alpha1 = 5.7546
  medn1 = 3.49034
mode1 = 1.28403
  beta1 = 56.9017


Density at medn1 = 0.114299


lognormal  2:

theta2 =    2.5
  sigma2 =   0.05


alpha2 = 12.4909
  medn2 = 12.1825
 mode2 = 11.5883
  beta2 = 7.99944


Density at medn2 = 0.14645


Mixing probability =    0.6


Mean of the mixture = 8.44912
  Median of the mixture = 6.9672
  Variance of the mixture = 21.7645


Density at the TRUE median of the mixed distribution = 0.0315675


Asymptotic approximation to variance of the median at the TRUE median: 8.36252


Density at the mean of the bootstrap medians = 0.0692325


Asymptotic approximation to variance of the median at the SAMPLE median: 1.7386


EMPIRICAL variance of the bootstrap median:1.42601


---------------------------------------------------------------------------------------------------------------------------------

Runtime = 9.59  seconds.

Interestingly, the distribution of the bootstrap medians is clearly bimodal. Again, it is apparent that, in other respects, the bootstrap EDF reflects well the peculiarities of the particular sample drawn and much less well the original population parameters, underscoring the usefulness of a priori information:






      Example 6


Mean
Median
Variance

Population
8.449
6.967
21765

Sample
13.008
11.823
35.713

Bootstrap: Mean
12.867
11.864
32.226

Bootstrap: Median
11.864
11.823
1.437

Bootstrapping in Regression

To repeat, the central idea in bootstrapping is to use the sample at hand as a source of information about the underlying stochastic mechanism which is a central part of the process assumed to generate the data. It is the random component of the model which must be resampled in bootstrapping. In the previous section, I dealt with the problem directly: The random variable, which was to be resampled was directly observed. In classical OLS regression, however, the random components of the model are not directly observed; this is what we mean when we refer to the disturbances in econometric models as latent. Consider the classical regression model: 
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. The matrix X is assumed to be fixed in repeated samples. If we take this assumption literally, the only elements of the observed sample to be resampled are the ('s but these are not directly observed but can only be inferred from the estimates of (, given the matrix X. Certainly the one thing we don't want to do is to resample from the rows of [y X], so-called case resampling. That would be appropriate only if we also regarded the independent variables as being generated stochastically and did not condition on the values observed. One common procedure is to resample the calculated residuals. (Indeed, in any analysis in which some subset of the variables is conditioned on, this procedure would be appropriate.) The procedure is as follows for the OLS regression model above:


(1) Estimate ( as b = (X'X)-1X'y.


(2) Calculate the residuals from this regression, e = y - Xb.


(3) Resample these residuals rows(X) times with equal probability and with replacement. Let the 


resampled residuals be e*. 


(4) Calculate the values of y corresponding to the resampled values of the residuals row by row, 


using Xb, as obtained in (1). Let these be y* = X'b + e*. 


(5) Recalculate the OLS regression coefficients as b* = (X'X)X'y*.


(6) Repeat steps (3) - (5) B times.

This procedure will give us B bootstrapped estimates of ( which can be examined just as we have examined estimates of the mean, median, and variance  above. Note that the OLS estimate of (, b, is held fixed in the bootstrap procedure.


One problem with this procedure is that the distribution of the resampled disturbances is not exactly the same as the distribution of the original disturbances (. In particular, the covariance matrix of e is 
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, which means that the OLS calculated residuals are neither homoskedastistic nor independent of one another even if the ('s, as assumed, really are.
 The obvious transformation to achieve residuals with the appropriate properties of independence and constant variance won't work, of course, because the matrix I-X'(X'X)X is not of full rank, nor is there any unique transformation which will achieve 
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. We can get disturbances of constant variance, however, simply as 
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, but these transformed disturbances are still not independent of one another. I can find discussions of the heteroskedasticity of the calculated residuals in the bootstrapping literature, e. g., Urban Hjorth (1994, p. 187) but not of the failure of independence. In the examples which follow, I will make a correction for heteroskedasticity in the calculated OLS residuals which are resampled in the bootstrap procedure but not for the failure of these residuals to reflect the underlying assumption of the independence of the ('s.

Example 7: Bootstrapping OLS Regression Statistics, an Artificial Example. Boot04.gss presents a simple example of the bootstrap for regression using artificial data. Twenty observations  on the independent variable x were generated from 
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 Then the observations on the dependent variable were generated from 
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 The results of doing an OLS regression on this sample were: a0 = 10.2832, a1 = 0.9970, s2 = 0.8126. Only the variance is underestimated significantly. The standard errors for the constant and the slope are 0.5022 and 0.06795, respectively, with corresponding t-statistics of 20.478 and 14.672. (As an exercise, you might modify boot04 to obtain a regression and a sample for which the OLS regression doesn't fit so well in order to see more dramatically how the bootstrap results reflect more the particular sample you start with than they do the underlying DGP for the data.) I then ran a bootstrap for the distributions of the OLS estimators of a0, a1, and s2 with 10,000 replications with the following results:






     Example 7

Item
True value
OLS estimate
Bootstrap Mean
Bootstrap 

Standard Deviation

a0, coefficient
10.0
10.2832
10.2762
0.45273

a0, standard error

0.5022



a1, coefficient
1.0
0.9970
0.9979
0.06058

a1, standard error

0.06795



s2
1.0
0.8126
0.6590
0.2569

The accompanying graphs illustrate that not only are the estimates of a0 and a1 right on target but they are approximately normally distributed with variance which correspond closely to the OLS estimates for the original sample. (I did not check to see whether the t-distribution is a good approximation for the bootstrap t-statistics.) Unfortunately, the same cannot be said for the bootstrap estimates of the variance of the disturbance, s2. As we might expect, the mean of the distribution of the bootstrap estimates reflects more the underestimate of the true value of sigma2 from the particular sample drawn than it does the true value; but , more significantly, it is clearly not chi-square distributed with even the sample estimate and 18 degrees of freedom.


A common alternative to the classical regression model, but one which still leads to the optimality of OLS, is the so-called case of stochastic regressors.
 In this case, we interpret the regression as the mean of the dependent variable conditional on the values of X observed. The properties of , for example the OLS regression coefficients are obtained by first conditioning on the explanatory variables, then integrating over the conditional distributions. On this interpretation of regression, we should resample not only the disturbances but also the values of the regressors for these are also part of the stochastic DGP. Efron and Tibshirani (1993, , pp. 113 - 115) call this "resampling pairs"  and remark that "Bootstrapping pairs is less sensitive to assumptions than boot strapping residuals." Urban Hjorth (1994, pp. 187 - 188) describes this type of bootstrapping as "vector resampling." In general, we might expect bootstrapping pairs to produce estimates with more variability than bootstrapping residuals, which might be desirable in situations in which the regressors are not controlled variables as they would be in an experimental context. As long as the regressiors are uncorrelated with the disturbances in the regression equation it is legitimate to condition on them, but, of course, the estimates so obtained will vary due to variation in the particular observations on X obtained; vector bootstrapping will reflect that variation, at least to the extent revealed by the original sample at hand. A related use of vector bootstrapping is in specification analysis.
 In the example which follows, I use vector bootstrapping to determine the form of the cost function associated with steam electricity generation.

Example 8: Bootstrapping OLS Regression Specification and Statistics, Returns to Scale in Electricity 


Supply. 


The results are generated  by basic05.gss. The first regression equation is:

(*)
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where

C 
= total generation costs,



KWH 
= total kilowatt hours of electricity produced,



pf 
= the price of fuel,



pl
= the price of labor, and 



pk
= the unit cost of capital.

The data are for 159 steam-electric generating plants in 1955 (my original sample was 145). details of the data are given in Nerlove, op. cit.. The initial OLS regression gives the following results:


Constant
log KWH
log pl/pf
log pk/pf

Coefficient
-4.772
0.7227
0.5614
-0.001466

Standard error
0.8858
0.01697
0.2052
0.1898

t-statistic
-5.387
42.59
2.736
-0.007727

mean log KWH = 6.671


R2 = 0.9299

returns to scale = 1.384


Except for the coefficient associated  with
log pk/pf    this superficially looks like a good regression, but appearances are deceptive. A plot of the residuals from this regression against log KWH reveals a definite U-shape. Plotting the regression line as a function of log KWH and observed values of log C/pf corrected for price effects by the regression on the same graph with log KWH on the abscissa gives even clearer evidence of curvilinearity in the relationship between cost and output. In the 1963 paper I tested for this misspecification by dividing the observations into five groups according to ascending values of KWH and estimating the regression within each group, subject to certain restrictions across groups. I concluded that the degree of returns to scale was falling with increasing log KWH approximately hyberbolically, other coefficients the same. Thus I replaced (*) above with

(**)
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where the degree of returns to scale is now a function of log KWH falling with increasing KWH:

(***)
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 EMBED Equation  [image: image37.wmf]r
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Vector bootstrapping provides an interesting alternative to the way in which I found and corrested the misspecification in (*). Resampling the values of both independent and the dependent variables yields samples with different mean log KWH. I resampled 1000 times. For each of these 1000 samples I recomputed regression (*) and plotted the estimate of a2, i.e., the reciprocal of the estimated degree of returns to scale, against mean log KWH for that sample. The plot reveals a clear linearly increasing relationship which corresponds exactly to (***). The regression of a2 on mean log KWH yields:



est. a2 =  0.2084   +   0.0739 mean log KWH,  R2 = 0.0790,




(0.0460)      (0.0080)




4.534
      9.254

which is a highly significant regression with 1000 data points. This result justifies replacing (*) by (**). OLS estimates of the coefficients of this regression are:


Constant
log KWH
log2 KWH
pl/pf
pk/pf

Coefficient
-3.712
0.1307
0.05177
0.4626
0.07186

Standard Error
0.6913
0.05949
0.005075
0.1586
0.1466

t-statistic
-5.37
2.197
10.2
2.917
0.4902

mean log KWH = 6.671

R2 = 0.9583

returns to scale at mean log KWH = 2.101

The addition of log2KWH to the regression is highly significant; a comparison of the residual SS from (**) and (*) shows that the new specification is a significant improvement over the old. The residual plots reveal nothing out of the ordinary. I bootstrapped (**) with 10000 repetitions. The results for the coefficients are not particularly interesting or remarkable; however, the degree of returns to scale is estimated as a nonlinear function of output. I could, in principle, obtain an estimate of its variance for any given level of output only asymptotically using the delta method. The bootstrap gives a more direct result: at mean log KWH for each resample, the mean bootstrap estimate of 
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is 2.109 with standard deviation = 0.1325. I could also have calculated bootstrap estimates of r for a sequence of fixed values of KWH and graphed the function with  one or two standard deviation limits above and below. (See Urban Hjorth, 1994, "Bootstrapping a cost function," pp. 241 -250, for an example of bootstrapping an entire empirical function.) basic05.gss graphs EDFs for the coefficients of log KWH, log2KWH, s2, and the resampled values of r computed at the resample means of log KWH. I have also superimpose a normal distribution with mean equal the mean of the resampled estimate of the coefficients and of r. It is usual with such graphs that a substantial portion of the EDF appears to lie outside the corresponding theoretical distribution with the same mean and variance. The reason is that the EDF is truncated whereas the corresponding PDF is not.

Example 9: Bootstrapping Nonlinear Regression. In this example I consider bootstrapping the maximum-likelihood (identical to nonlinear least-squares) estimates of the coefficients for the simplest form of nonlinear regression:
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In this case, I generated the data: N = 20 observations, with a0 = 2.5, a1 = 0.25, b = 2.5, (2 = 100. The x series was also generated but assumed fixed in repeated samples for estimation and bootstrapping purposes. The DGP was x = 0.5*seqa(1, 1,20) + sqrt(10)*rndu(N,1); . The resulting series was then fixed throughout the remaining calculations:


{3.5104
1.7278
3.1601
4.0099
3.4259
4.1231
4.7934
4.7501
5.0277
7.2197



7.5301
7.6453
7.4881
7.7315
9.6487
10.2315
10.8605
11.0478
11.2747
10.1609}' .

The results of generating a sample of y's for these parameters and values of x are generated and graphed by boot06a.gss. It is apparent from Figure 6.1a that the relationship to be estimated is quite nonlinear. The likelihood function can easily be concentrated in the parameter b so that the problem can be reduced to maximizing the concentrated likelihood function with respect to the single parameter b and then recovering estimates of a0, a1, and (2 by regressing y on a vector of ones and 
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 is that value which maximizes the concentrated likelihood function. I used the method of steepest ascent.
 This procedure yielded the following results:

Maximize the Concentrated Likelihood Function using Method of Steepest Ascent:

Start =      2.5
  maxiter =      100


(Using procedure STEEP)

Iterations =               10


Maximizing values:

betahat =           2.8261
  Concentrated Likelihood =         -73.1343


Gradient =     1.50853e-006
Hessian =          -4.9346


Remaining parameters are obtained by OLS regression using x^b as regressor:

Estimated parameter values (a0, a1, b, s2) = 

         6.81142
        0.120972
          2.8261
         92.4663


Standard errors from HESSP:

          5.1465
        0.137346
        0.464682
         30.8229


t-statistics:

          1.3235
        0.880786
         6.08179
         2.99992


residual SS =          1756.86


Runtime method of steepest ascent, conc. LF =      4.0000e-002   seconds
While the estimates of the parameters are not really close to the true values used to generate the data, 20 observations is not a great many for the good asymptotic properties of ML to be expected to "kick in." The fit is not particularly good and the residuals show considerable evidence of hetereoskedasticity. On the other hand b is reasonably well and accurately estimated and the asymptotic t-statistics clearly indicate the unreliable nature of the results. Graphs of the nonlinear regression equation and the actual values of y and of the residuals from the regression both suggest that the regression captures the nonlinearity well (est b is highly significant and not far from the true value), but yield strong evidence of heteroskedasticity not present in the DGP and not correctable by the standard fix-up.


Bootstrap estimates are computed in boot06b.gss  and graphed by a separate program boot06b.gss. The results for the estimated parameters for 1000 repetitions of the bootstrap were, for one particular run:

 Means of Bootstrap Estimates:

  mean a0boot =    -61.074
  mean a1boot =   0.356786
  mean bboot =   2.83577    mean s2boot  =    75.9049


Maxima of Bootstrap Estimates:

  max a0boot =    11.5376
  max a1boot =   0.452706
  max bboot   =    3.61395     max s2boot  =     154.66


Minima of Bootstrap Estimates:

  min a0boot =   -154.868
  min a1boot =   0.127353
    min bboot =    1.91312       min s2boot  =    19.4669


Variances of Bootstrap Estimates:

     of a0boot  =    1581.73
   of a1boot = 0.00400366
        of bboot =   0.025495          of s2boot =    497.583


Standard deviations of Bootstrap Estimates:

      of a0boot =     39.771
    of a1boot =  0.0632745
          of bboot =   0.159672          of s2boot =    22.3066
Frequency distributions of the bootstrapped coefficient estimates and residual variance are graphed by boot06c.  The estimates of a0 and a1 are extremely variable with very ragged EDFs. The estimate of a0 is obviously extremely unreliable, confirming both the bootstrap estimate of the variance and the ML asymptotic result. Perhaps the most important finding, however, is the bootstrap variance of the estimate of b. This is considerably smaller than the asymptotic result, notwithstanding the appearance of the EDF and the considerable spread between the maximum and minimum values obtained.


Once again, the means of the bootstrap estimates reflect largely the particular sample used in the original estimation. The distributional findings add a new dimension, however, to the asymptotic ML results. Given the effort necessary to obtain the former, however, it is not clear that bootstrapping is worth the benefit.


Example 10: Bootstrapping  a Poisson Model for Count Data. In this example, I estimate the Poisson count model applied in Greene (1993, pp. 676 - 679) to a study of wave damage to cargo ships.
 The data originally used by Lloyd's to set insurance premia for cargo ships, were collected to calculate the risk of damage associated with three factors: (1) ship type; (2) year of construction; and (3) period of operation. "It seems reasonable to suppose that the number of damage incidents is directly proportional to the aggregate months of service or total period of risk." (McCullagh and Nelder, op. cit., p. 206.) The problem of running a regression for this example is that the number of accidents experienced for some classes of vessels and some years of construction are zero and some are very small. As Greene suggests, a Poisson model may be more appropriate.
 The object of the analysis is to see whether any of the factors other than service or exposure to risk, affect the probability of damage. The analysis attempts to asses the probability of  accident as a function of ship type, year of construction, and exposure. The first two are represented by dummies and the last by continuous variable which varies by a factor of more than 450 from its lowest to its highest value. The probability of an accident in a unit period is assumed to be 
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To estimate the parameters (, I eliminate ship type A and construction year 60 - 64 and add an overall constant. The results obtained using the method of steepest ascent are computed and contrasted with Greene's reported results in ships1.gss. Although the results I obtain,

Steepest Ascent Method applied with start value =      1     1     1
     1    1     1     1     1     0


and maxiter =    100


Gradient at start values = 

-78.47
 76.35
-62.65
-52.65
-47.65
-22.73
-0.7312
-52.73
1.208e+006


iter =      8


Maximizing value of beta = 

 1.121
-0.432
-1.895
-0.7933
-0.5191
0.4029
 1.411
0.9141
0.0001426


 logLikelihood at the maximum =  -46.8


Gradient at the maximum = 

6.338e-006  -9.868e-006     0
-1.791e-006  -1.369e-006   1.411e-005     0
2.332e-006  -0.0003553


Standard errors implied by the Hessian evaluated at the maximum: 

0.2742
0.4395
0.4802
0.3114
0.2837
0.2392
0.2281
0.2921
3.068e-005


Assymptotic t-values implied by the maximum: 

 4.089
-0.983
-3.946
-2.548
 -1.83
 1.684
 6.187
  3.13
 4.647


Values of beta at the maximum:

 1.121
-0.432
-1.895
-0.7933
-0.5191
0.4029
 1.411
0.9141
0.0001426
,

are essentially the same as those obtained by Greene,

Coefficients obtained by Greene, Table 21.13, p. 678: 

    1.1211
  -0.43206
   -1.8946
  -0.79328
  -0.51914
   0.40292
    1.4109
0.91409
 0.0001426


log Likelihood at Greene's estimates =   -46.7992


Gradient at Greene's estimates: 

-0.0664054  -0.0645715  -0.000113261  -0.000369029  -0.000510522  -0.0322717  -0.0185288  -0.00397367    -1114.17


Standard errors implied by the Hessian evaluated at Greene's estimates: 

   0.27414
  0.439182
  0.480189
  0.311381
  0.283714
  0.239118
  0.228022
 0.292017
3.06556e-005


Assymptotic t-values implied by Greene's estimates: 

   4.08952
 -0.983783
  -3.94553
  -2.54762
   -1.8298
   1.68503
   6.18756
 3.13026
   4.65168
,

I cannot obtain these results using QNewton in GAUSS, which does not converge. The problem is clearly caused by the rapidly changing values of the likelihood function in the variable service rather than by any lack of convexity, as shown clearly by the graphs of the LF in each of the 9 parameters. When this variable is rescaled by a factor of 10-3 this problem disappears. The same results are obtained from QNewton as from my own naive STEEP. The reason why STEEP works without rescaling and QNewton does not is instructive for ML estimation in general but beyond the scope of this discussion. 


The results suggest that, adjusting for exposure, ship type and year of construction are highly significant in explaining incidents of wave damage.


boot07a.gss performs the bootstrap with 500 repetitions. Only the y's are resampled; the probability is conditional on ship type and year of construction observed. Since it is possible for STEEP to fail, principally in the LF function calculation or in the numerical evaluation of the hessian, the program is designed to produce only 500 repetitions, but to output these in a special file for subsequent analysis and graphing in boot07b.gss. The bifurcation permits consolidation of successive runs of 500 repetitions each. Indeed, my bootstrap is based on four runs of boot07a.gss, for a total of 2000 repetitions. Although the probability of failure on one repetition is slight, the chances that the program encounters a failure sufficient to cause it to stop mounts rapidly with the total number of repetitions. Here are the results:

Means of bootstrap coefficient estimates:

    1.8377
 -0.498207
 0.0269902   0.0156426   0.0331888  -0.0496187   -0.0136423    -0.102721
  0.014867


Maxima of bootstrap coefficient estimates:

   3.97728
   17.4273
   14.7533
   14.6928
   15.1258
   4.35343
   4.36837
 3.8374
    2.5829


Minima of bootstrap coefficient estimates:

  -12.5393
  -52.8028
  -11.5612
  -11.6586
  -4.30545
  -7.70222
  -4.68064
 -6.16878
  -1.93313


Variances of bootstrap coefficient estimates:

   1.67852
   16.5267
   2.28672
   2.11166
   2.02404
   1.35728
   1.31467
1.43312
 0.0673095


Standard deviations of bootstrap estimates:

   1.29558
    4.0653
   1.51219
   1.45315
   1.42269
   1.16502
   1.14659
  1.19713
  0.259441


Implicit t-statistics:

   1.41844
 -0.122551
 0.0178484   0.0107646    0.0233282  -0.0425904  -0.0118981    -0.085806
 0.0573042


The results are quite remarkable in a number of ways: First, the bootstrap means are very different than the coefficients estimated from the original sample, so that the bootstrap estimates are not so completely dominated by the original sample as in the case of ordinary regression. Second, the variances of the bootstrap estimates are much larger than the asymptotic ML estimates obtained from the hessian at the maximum. It no longer appears to be true that we can claim the significance of ship type and year of construction on the probability of wave damage. The EDFs are graphed by boot07b.gss; several are quite skewed. They are not centered on the original ML estimates. At this point I'm not sure what one should conclude from this.

Bias Correction, the Double Bootstrap and Bootstrap Confidence Intervals

Consider an estimator of some parameter, (,  for a distribution function F(x ) based on a sample of  n values {x1, x2,  ..., xn} drawn independently from a population assumed to have this distribution, 
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, being a function of the RVs which constitute the sample, has itself a distribution, say H. As I have described it above, the simplest nonparametric bootstrap assumes nothing about the distribution F, except perhaps that it is continuous, and proceeds to "reconstruct" it from the sample {x1, x2,  ..., xn}, by resampling, say B times, with replacement from the original sample. (This is the EDF corresponding to the unknown distribution function G.)  The statistic 
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 is estimated from each of the B resamples. This process yields an estimate of the distribution H, i.e., the EDF of 
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, say H*. Now, the distribution H may or may not have a mean and a variance, although H* being based on a finite number of bootstrap repetitions, resamples, surely has. Let us assume H has both a mean and a variance: Then 
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. If we are considering an estimator 
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 we'd like to know if it is unbiased, bias =0, and what its variance is so that we can assess its "reliability" as an estimate of (. The trouble is that we don't know the "true" value of (, i.e., F. In many cases for parametrically specified Fs, of course, we have theoretical results. Often when we don't, we can obtain an asymptotic result, i.e., a result approximately valid for large n. We can also do a Monte Carlo simulation for numerically specified Fs to obtain corresponding numerical estimates of the distribution of 
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 as a function of the parameters specified, although the generality of the results may be limited by the specificity of the values chosen. Now, however, we have a particular sample from an unknown distribution and an estimate of (. In what sense does the mean of the 
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,  give us a better estimate of the parameter (? Effron (1982, pp. 11, 33 and 44 - 45) shows that when 
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 Moreover, if the resampling distribution were equal to the true distribution F, this estimate would be the true bias of the statistic 
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. Of course, it's not, but it's the best we can know empirically on the basis of the sample at hand

Thus the argument in the bootstrap literature runs that the bias corrected estimate 
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 because it takes into account the information in the sample about the underlying distribution F. To examine the distribution of 
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 and base inferences on ( from it we presumably need to repeat the bootstrap process for 
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; hence the term double bootstrap (see Urban Hjorth, 1994, pp. 99 - 100). Efron (1982, p. 8) suggests that "...bias correction may add more to the mean square error [of 
[image: image63.wmf]$

q

] ... than it removes in (bias)2", because, presumably, the bootstrap bias estimator contains an indeterminate amount of variability because it is based on a single "real" sample of data. Nonetheless, particularly in conjunction with and estimate of the variance of 
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 from its EDF, the estimate bias* can suggest whether there might be a serious problem with 
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Example 11:Bias in the Estimate of the Ratio of Means by the Ratio of Two Sample Means. Mooney (1993, p. 32) suggests the following example of an estimator which we know to be biased: Suppose we have two distributions of unknown form but identical form and having, presumptively, different means and possibly other moments. We want to estimate the ratio of the two means. Following Mooney's example in outline but not in detail, I assume two normal distributions with means 5 and 1, respectively, and two lognormal distributions with identical means and variances, the parameters ( and (2 set accordingly, and two sample sizes, 50 and 20. Since I don't know what the true bias of the ratio of the two sample means as an estimate of the ratio of the population means is, I have to do a Monte Carlo simulation to find out. Independently of this Monte Carlo experiment, I will perform another both to obtain the bootstrap bias estimate and to assess its bias relative to the estimate of the bias obtained by Monte Carlo. 


boot08a.gss checks the computation of normal and lognormal RVs with means 5 and 1 and variances 1. This is not completely trivial since if log u is distributed normally with mean ( and variance (2 the mean and variance of  the distribution of u are given, respectively, by
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so we have to invert these equations to find the values of ( and (2 corresponding to ( = 5 or 1 and (2 = 1. These values are, respectively, ( = 1.59 and -0.3466 and (2 = 0.3922 and 0.631.


boot08b.gss performs the Monte Carlo experiment for 2000 replications for the "true" models to assess the bias and standard deviation of the bias in the estimate 
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 as an estimate of the ratio of the true means, which is 5 in all cases. 


boot08c.gss carries out the Monte Carlo simulation of the bootstrap, in which an estimate of the bias is obtained. Each bootstrap was replicated 500 times; the Monte Carlo  of the bootstraps was replicated 1000 times. this means, in effect that each bootstrap is run 50,000 times; needless to say the program takes a while to run. The results are summarized in the following table:






Table for Example 11

Distribution and

Sample Size
Monte Carlo

Bias
Monte Carlo

std of the bias
Mean Bootstrap 

Bias
Mean Bootstrap 

std of the bias

Normal 50
0.126744
 0.819486
0.123539
0.85716

Normal 20
0.38923
 1.736142
0.58593
8.06302

Lognormal 50
0.2493732
 1.139719
0.092914
0.693953

Lognormal 20
0.00552071
 0.07430148
0.199626
1.07911

These results contrast with Mooney's who found uniformly small biases by Monte Carlo, which were accurately reflected in the bootstrap estimates of the bias (although Mooney does not report estimates of the std of the bias estimates for either MC or bootstrap). I cannot account for these differences or for the reversal in the extent of  the MC estimate of bias with sample size in the lognormal case. The results for the bootstrap are, in fact, much more plausible. It is clear, however, that the results of both MC and boostrap are extremely variable, which might have been expected since the estimate is obtained as the ratio of two quantities whcih are approximately normally distributed.




-------------------To be continued-------------------
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