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2.5 Panel Unit-Root Tests

Univariate/single-equation econometric methods for testing unit roots
can have low power and can give imprecise point estimates when work-
ing with small sample sizes. Consider the popular Dickey—Fuller test
for a unit root in a time-series {¢;} and assume that the time-series are
generated by

Ag =g+t + (p—1)q1 + €, (2.67)

where ¢, N(0,0%). If p = 1,a; = ag = 0, ¢ follows a driftless unit
root process. If p = 1,07 = 0,9 # 0, ¢; follows a unit root process
with drift If |p| < 1, y; is stationary. It is mean reverting if ; = 0, and
is stationary around a trend if oy # 0.

To do the Dickey—Fuller test for a unit root in ¢;, run the regres-
sion (2.67) and compare the studentized coefficient for the slope to the
Dickey—Fuller distribution critical values. Table 2.1 shows the power of
the Dickey-Fuller test when the truth is p = 0.96.2° With 100 observa-
tions, the test with 5 percent size rejects the unit root only 9.6 percent
of the time when the truth is a mean reverting process.

100 quarterly observations is about what is available for exchange
rate studies over the post Bretton-Woods floating period, so low power
is a potential pitfall in unit-root tests for international economists. But
again, from Table 2.1, if you had 1000 observations, you are almost
guaranteed to reject the unit root when the truth is that ¢; is stationary
with p = 0.96. How do you get 1000 observations without having to
wait 250 years? How about combining the 100 time-series observations
from 10 roughly similar countries.?! This is the motivation for recently
proposed panel unit-root tests have by Levin and Lin [91], Im, Pesaran
and Shin [78], and Maddala and Wu [99]. We begin with the popular
Levin—Lin test.

20Power is the probability that the test correctly rejects the null hypothesis be-
cause the null happens to be false.

21Tt turns out that the 1000 cross-section-time-series observations contain less
information than 1000 observations from a single time-series. In the time-series, p
converges at rate T, but in the panel, p converges at rate Tv'N where N is the
number of cross-section units, so in terms of convergence toward the asymptotic
distribution, it’s better to get more time-series observations.
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Table 2.1: Finite Sample Power of Dickey—Fuller test, p = 0.96.

T | 5 percent | 10 percent

Test 25 5.885 11.895
equation 50 6.330 12.975
includes 75 7.300 14.460
constant | 100 9.570 18.715

1000 99.995 100.000
Test 25 5.715 10.720
equation 50 5.420 10.455
includes 75 5.690 11.405
trend 100 7.650 14.665

1000 99.960 100.000

Notes: Table reports percentage of rejections at 5 percent or 10 percent critical
value when the alternative hypothesis is true with p = 0.96. 20000 replications.
Critical values are from Hamilton (1994) Table B.6.

The Levin—Lin Test

Let {gi} be a balanced panel?? of N time-series with 7" observations
which are generated by

Agir = 0t + BiGir—1 + Ui, (2.68)

where —2 < 3; < 0, and u;; has the error-components representation

Usp = Q; + (9t + €3- (269)

«; is an individual-specific effect, 6, is a single factor common time ef-
fect, and €; is a stationary but possibly serially correlated idiosyncratic
effect that is independent across individuals. For each individual i, €;
has the Wold moving-average representation

D
€t = Z Oij€it—j + Wit
i=0

(2.70)

22 A panel is balanced if every individual has the same number of T observations.
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@i+ is a unit root process if 3; = 0 and 6, = 0. If there is no drift in the
unit root process, then o; = 0. The common time effect 6, is a crude
model of cross-sectional dependence.

Levin—Lin propose to test the null hypothesis that all individuals
have a unit root

H0151:“':5N:5:()7

against the alternative hypothesis that all individuals are stationary

Ho:pr=--=pn=08<0.

The test imposes the homogeneity restrictions that [3; are identical
across individuals under both the null and under the alternative hy-
pothesis.

The test proceeds as follows. First, you need to decide if you want
to control for the common time effect ;. If you do, you subtract off
the cross-sectional mean and the basic unit of analysis is

1 N
Jit = it — N Z 4t - (2-71)
j=1

Potential pitfalls of including common-time effect. Doing so however
involves a potential pitfall. 6;, as part of the error-components model,
is assumed to be #id. The problem is that there is no way to im-
pose independence. Specifically, if it is the case that each g;; is driven
in part by common unit root factor, 6; is a unit root process. Then
it = Qit — % Zf\il q;¢ will be stationary. The transformation renders
all the deviations from the cross-sectional mean stationary. This might
cause you to reject the unit root hypothesis when it is true. Subtract-
ing off the cross-sectional average is not necessarily a fatal flaw in the
procedure, however, because you are subtracting off only one potential
unit root from each of the N time-series. It is possible that the N
individuals are driven by N distinct and independent unit roots. The
adjustment will cause all originally nonstationary observations to be
stationary only if all N individuals are driven by the same unit root.
An alternative strategy for modeling cross-sectional dependence is to
do a bootstrap, which is discussed below. For now, we will proceed



54 CHAPTER 2. SOME USEFUL TIME-SERIES METHODS

with the transformed observations. The resulting test equations are

k;
AGir = a; + 6t + BiGi—1 + Y 0ijAGi—j + €. (2.72)

j=1

The slope coefficient on ¢;_, is constrained to be equal across individ-
uals, but no such homogeneity is imposed on the coefficients on the
lagged differences nor on the number of lags k;. To allow for this speci-
fication in estimation, regress Ag;; and §;;—1 on a constant (and possibly
trend) and k; lags of Ag;.%

k;

AGe = ai+bit +>¢ijAGi—j + i, (2.73)
j=1
ki

Giter = @+ Uit + Y i AGu—j + Ui, (2.74)

where é;; and ¥;; are OLS residuals. Now run the regression

it = 0iUy—1 + Uy, (2.75)
set 02 = 7 k — pora ko2 Uz, and form the normalized observations
A 1
Cit = 7—, Vit = = (276)
O¢i et

Denote the long run variance of Ag; by agi = 7 + 22000%, where
76 = E(AgZ) and fy; = E(AquAgis—;). Let k = % SN | k; and estimate
oy, by Newey and West [114]

A+ 22 (1 — k—+1) Az, (2.77)

23To choose k;, one option is to use AIC or BIC. Another option is to use Hall’s [69]
general-to-specific method recommended by Campbell and Perron [19]. Start with
some maximal lag order ¢ and estimate the regression. If the absolute value of the
t-ratio for ¢; is less than some appropriate critical value, c¢*, reset k; to £ — 1 and
repeat the process until the t-ratio of the estimated coefficient with the longest lag
exceeds the critical value c*.
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Table 2.2: Mean and Standard Deviation Adjustments for Levin—Lin 7
Statistic, reproduced from Levin and Lin [91]

i e Ue Ter

T \K| pp  op | w3 op | Hp 0%
2519 10.004 1.049|-0.554 0.919 | -0.703 1.003
30 [ 10 ] 0.003 1.035 | -0.546 0.889 | -0.674 0.949
35 | 111 0.002 1.027 | -0.541 0.867 | -0.653 0.906
40 |11 | 0.002 1.021 | -0.537 0.850 | -0.637 0.871
45 |11 10.001 1.017 | -0.533 0.837 | -0.624 0.842
50 |12 { 0.001 1.014 |-0.531 0.826 | -0.614 0.818
60 | 13]0.001 1.011 [-0.527 0.810 | -0.598 0.780
70 | 13 | 0.000 1.008 | -0.524 0.798 | -0.587 0.751
80 | 14 | 0.000 1.007 |-0.521 0.789 | -0.578 0.728
90 |14 ]0.000 1.006 |-0.520 0.782|-0.571 0.710
100 | 15 | 0.000 1.005 | -0.518 0.776 | -0.566 0.695
250 | 20 | 0.000 1.001 | -0.509 0.742 | -0.533 0.603

oo | — [0.000 1.000 |-0.500 0.707 | -0.500 0.500

aio_ 1 T NG C_ Ogi — LN o
where 9; = 753001 AGuAdi—j. Let s; = T SN = ¥ 2iz1 Si and
run the pooled cross-section time-series regression

€it = BUit—1 + €it. (2.78)

The studentized coefficient is T = BZiJ\LthTzlﬁit_l/&g where 6; =
ﬁ ZZ—]\L 1 Zthl €. As in the univariate case, 7 is not asymptotically
standard normally distributed. In fact, 7 diverges as the number of
observations N'T' gets large, but Levin and Lin show that the adjusted

statistic _ .
T — NTSyrui6-231
= NTHFO B B o, 1), (2.79)

%
9r

asT — 0o, N — oo where T =T —k—1, and w7 and o are adjustment
factors reproduced from Levin and Lin’s paper in Table 2.2.

Performance of Levin and Lin’s adjustment factors in a controlled en-
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Table 2.3: How Well do Levin—Lin adjustments work? Percentiles from
a Monte Carlo Experiment.

Statistic | N | T | trend | 2.5% 5% 50% 95% | 97.5%
T 20| 100 | mno -7.282 | -6.995 | -5.474 | -3.862 | -3.543

20| 500 | mno -7.202 | -6.924 | -5.405 | -3.869 | -3.560

T* 20 | 100 | no -2.029 | -1.732 | -0.092 | 1.613 | 1.965

20 {1 500 | mno -1.879 | -1.557 | 0.012 | 1.595 | 1.894

T 20| 100 | yes |-10.337 | -10.038 | -8.642 | -7.160 | -6.896

20 | 500 | yes |-10.126 | -9.864 |-8.480 | -7.030 | -6.752

T* 20| 100 | yes | -1.171 | -0.825 | 0.906 | 2.997 | 3.503

20| 500 | yes | -1.028 | -0.746 | 0.702 | 2.236 | 2.571

vironment. Suppose the data generating process (the truth) is, that
each individual is the unit root process

2
Agy = a; + Z Gij AGit—j + €it,

J=1

(2.80)

where ¢; 24 N (0,0;), and each of the o; is drawn from a uniform dis-
tribution over the range 0.1 to 1.1. That is, o; ~ U[0.1,1.1]. Also,
¢ij ~ U[—0.3,0.3], and a; ~ N(0,1) if a drift is included, (otherwise
a = 0).2* Table 2.3 shows the Monte Carlo distribution of Levin and
Lin’s 7 and 7" generated from this process. Here are some things to
note from the table. First, the median value of 7 is very far from 0. It
would get bigger (in absolute value) if we let N get bigger. Second, 7*
looks like a standard normal variate when there is no drift in the DGP
(and no trend in the test equation). Third, the Monte Carlo distribu-
tion for 7% looks quite different from the asymptotic distribution when
there is drift in the DGP and a trend is included in the test equation.
This is what we call finite sample size distortion of the test. When there
is known size distortion, you might want to control for it by doing a
bootstrap, which is covered below.

2Instead of me arbitrarily choosing values of these parameters for each of the
individual units, I let the computer pick out some numbers at random.
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Table 2.4: Size adjusted power of Levin-Lin test with 7" = 100, N = 20

Proportion Constant Trend

stationary” | 5% 10% | 5%  10%
0.2 0.141 0.275 | 0.124 0.218
0.4 0.329 0.439 | 0.272 0.397
0.6 0.678 0.761 | 0.577 0.687
0.8 0.942 0.967 | 0.906 0.944
1.0 1.000 1.000 | 1.000 1.000

Notes: %/ Proportion of individuals in the panel that are stationary. Stationary
components have root equal to 0.96. Source: Choi [26].

Another option is to try to correct for the size distortion. The
question here is, if you correct for size distortion, does the Levin—Lin
test have good power? That is, will it reject the null hypothesis when it
is false with high probability? The answer suggested in Table 2.4 is yes.
It should be noted, that even though the Levin-Lin test is motivated
in terms of a homogeneous panel, it has moderate ability to reject the
null when the truth is a mixed panel in which some of the individuals
are unit root process and others are stationary.

Bias Adjustment

The OLS estimator p is biased downward in small samples. Kendall [85]
showed that the bias of the least squares estimator is E(p) —p ~ —(1+
3p)/T. A bias-adjusted estimate of p is

Tp+1
T-3"

pr = (2.81)
The panel estimator of the serial correlation coefficient is also biased
downwards in small samples. A first-order bias-adjustment of the panel

estimate of p can be done using a result by Nickell [116] who showed
that

ATBT
—_—

(h—p) c (2.82)
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as T' — oo, N — oo where Ar = _;1_+1p), Br =1~ %%, and
_ 1 _ _20(1-Br)
Cr =1 - @

Bootstrapping 7*

The fact that 7 diverges can be distressing. Rather than to rely on
the asymptotic adjustment factors that may not work well in some re-
gions of the parameter space, researchers often choose to test the unit
root hypothesis using a bootstrap distribution of 7.2 Furthermore,
the bootstrap provides an alternative way to model cross-sectional de-
pendence in the error terms, as discussed above. The method discussed
here is called the residual bootstrap because we will be resampling from
the residuals.

To build a bootstrap distribution under the null hypothesis that all
individuals follow a unit-root process, begin with the data generating
process (DGP)

k;
Agiy = pi + Z Pij A —j + €t (2.83)
j=1
Since each ¢;; is a unit root process, its first difference follows an autore-
gression. While you may prefer to specify the DGP as an unrestricted
vector autoregression for all V individuals, the estimation such a sys-
tem turns out not to be feasible for even moderately sized V.
The individual equations of the DGP can be fitted by least squares.
If a linear trend is included in the test equation a constant must be in-
cluded in (2.83). To account for dependence across cross-sectional units,
estimate the joint error covariance matrix X = E(ge€,) by
= % ST €6/ where ¢, = (€, ..., ény) is the vector of OLS residuals.
The parametric bootstrap distribution for 7 is built as follows.

1. Draw a sequence of length 7"+ R innovation vectors from
Et ~ N<07 2)

2. Recursively build up pseudo-observations {g;},i = 1,..., N,
t=1,...,T + R according to (2.83) with the & and estimated
values of the coefficients fi; and ¢;;.

Z5For example, Wu [135] and Papell [118].
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3. Drop the first R pseudo-observations, then run the Levin—Lin test
on the pseudo-data. Do not transform the data by subtracting
off the cross-sectional mean and do not make the 7* adjustments.
This yields a realization of 7 generated in the presence of cross-
sectional dependent errors.

4. Repeat a large number (2000 or 5000) times and the collection of 7
and t statistics form the bootstrap distribution of these statistics
under the null hypothesis.

This is called a parametric bootstrap because the error terms are
drawn from the parametric normal distribution. An alternative is to do
a nonparametric bootstrap. Here, you resample the estimated residuals,
which are in a sense, the data. To do a nonparametric bootstrap, do the
following. Estimate (2.83) using the data. Denote the OLS residuals
by

(61176217---7€N1) «— obs. 1
<€12, €22, ce 7€N2) «— obs. 2
<€1T7 €2T7 RN ,éNT) «—obs. T

Now resample the residual vectors with replacement. For each obser-
vation t = 1,...,T, draw one of the T possible residual vectors with
probability % Because the entire vector is being resampled, the cross-
sectional correlation observed in the data is preserved. Let the resam-
pled vectors be

* * *

(€11,€31,-- - €y1) < obs. 1
* * *

(€12, €395+ €N) Obs. 2
* * *

(€ir, €py. .. €np) «obs. T

and use these resampled residuals to build up values of Ag;; recursively
using (2.83) with fi; and ¢;;, and run the Levin-Lin test on these ob-
servations but do not subtract off the cross-sectional mean, and do not
make the 7% adjustments. This gives a realization of 7. Now repeat a
large number of times to get the nonparametric bootstrap distribution
of 7.



60 CHAPTER 2. SOME USEFUL TIME-SERIES METHODS

The Im, Pesaran and Shin Test

Im, Pesaran and Shin suggest a very simple panel unit root test. They
begin with the ADF representation (2.72) for individual ¢ (reproduced
here for convenience)

k;
Ayt = a; + %t + BiGie—1 + Y _ 0ijAGiu—; + €3, (2.84)
=1

where E(e;e;s) = 0,7 # j for all £,s. A common time effect may be
removed in which case §;; = i — (1/N) XN | gy is the deviation from
the cross-sectional average as the basic unit of analysis.

Let 7; be the studentized coefficient from the ith ADF regression.
Since the €;; are assumed to be independent across individuals, the 7; are
also independent, and by the central limit theorem, Ty = % Zf\i L Ti
converges to a normal distribution first as 7' — oo then as N — oo.
That is

V N[y — E(7i| 3 = 0)] D,

Var (7|6 = 0)

N(0, 1), (2.85)

as T' — oo, N — oo. IPS report selected critical values for 7 with
the conditional mean and variance adjustments of the distribution. A
selected set of these critical values are reproduced in Table 2.5. An
alternative to relying on the asymptotic distribution is to do a residual
bootstrap of the 7y statistic. As before, when doing the bootstrap,
do not subtract off the cross-sectional mean.

The Im, Pesaran and Shin test as well as the Maddala—Wu test (dis-
cussed below) relax the homogeneity restrictions under the alternative
hypothesis. Here, the null hypothesis

Ho:ﬁlz---:ﬁ]v:ﬁ:o,
is tested against the alternative
HAZﬁl <OU52 <O"'UﬁﬁN < 0.

The alternative hypothesis is not Hy, which is less restrictive than the
Levin-Lin alternative hypothesis.
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Table 2.5: Selected Exact Critical Values for the IPS 7np Statistic

Constant Trend
T | 20 40 100 20 40 100
A. 5 percent

5 (-2.19 -2.16 -2.15|-2.82 -2.77 -2.75
101-1.99 -1.98 -1.97|-2.63 -2.60 -2.58
N|15|-191 -1.90 -1.89 |-2.55 -2.52 -2.51
20 | -1.86 -1.85 -1.84 |-2.49 -248 -2.46
25 [ -1.82 -1.81 -1.81|-2.46 -244 -2.43
B. 10 percent

5 (-2.04 -2.02 -2.01/|-2.67 -2.63 -2.62
10 |1 -1.89 -1.88 -1.88|-2.52 -2.50 -2.49
N|15|-1.82 -1.81 -1.81|-2.46 -244 -2.44
20 | -1.78 -1.78 -1.77 |-2.42 -2.41 -2.40
25 | -1.75 -1.75 -1.75|-2.39 -2.38 -2.38

Source: Im, Pesaran and Shin [78].

The Maddala and Wu Test

Maddala and Wu [99] point out that the IPS strategy of combining
independent tests to construct a joint test is an idea suggested by R.A.
Fisher [53]. Maddala and Wu follow Fisher’s suggestion and propose
following test. Let the p-value of 7; from the augmented Dickey—Fuller
test for a unit root be p; = Prob(r < 7;) = [T f(x)dz be the p-
value of 7; from the ADF test on (2.72), where f(7) is the probability
density function of 7. Solve for g(p), the density of p; by the method of
transformations, ¢g(p;) = f(r;)|J| where J = dr;/dp; is the Jacobian of
the transformation, and |J| is its absolute value. Since dp;/dr; = f(7;),
the Jacobian is 1/f(;) and g(p;) = 1 for 0 < p; < 1. That is, p; is
uniformly distributed on the interval [0, 1] (p; ~ UJ0, 1]).

Next, let y; = —2In(p;). Again, using the method of transforma-
tions, the probability density function of y; is h(y;) = g(pi)|dpi/dy;|.
But g(p;) = 1 and |dp;/dy;| = pi/2 = (1/2)e7¥/2, so it follows that
h(y;) = (1/2)e™¥/? which is the chi-square distribution with 2 degrees
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of freedom. Under cross-sectional independence of the error terms €,
the joint test statistic also has a chi-square distribution

N
A= 23 () ~ - (2.86)
=1

The asymptotic distribution of the IPS test statistic was established
by sequential 7" — oo, N — oo asymptotics, which some econometri-
cians view as being too restrictive.?® Levin and Lin derive the asymp-
totic distribution of their test statistic by allowing both N and 7" simul-
taneously to go to infinity. A remarkable feature of the Maddala—Wu-
Fisher test is that it avoids issues of sequential or joint N,T asymp-
totics. (2.86) gives the exact distribution of the test statistic.

The IPS test is based on the sum of 7;, whereas the Maddala—Wu
test is based on the sum of the log p-values of 7;. Asymptotically, the
two tests should be equivalent, but can differ in finite samples. Another
advantage of Maddala—Wu is that the test statistic distribution does not
depend on nuisance parameters, as does IPS and LL. The disadvantage
is that p-values need to be calculated numerically.

Potential Pitfalls of Panel Unit-Root Tests

Panel unit-root tests need to be applied with care. One potential pitfall
with panel tests is that the rejection of the null hypothesis does not
mean that all series are stationary. It is possible that out of N time-
series, only 1 is stationary and (N-1) are unit root processes. This is
an example of a mixed panel. Whether we want the rejection of the
unit root process to be driven by a single outlier or not depends on the
purpose the researcher uses the test.?”

26That is, they deduce the limiting behavior of the test statistic first by letting
T — oo holding N fixed, then letting N — oo and invoking the central limit
theorem.

Z"Bowman [17] shows that both the LL and IPS tests have low power against
outlier driven alternatives. He proposes a test that has maximal power. Taylor and
Sarno [131] propose a test based on Johansen’s [80] maximum likelihood approach
that can test for the number of unit-root series in the panel. Computational con-
siderations, however, generally limit the number of time-series that can be analyzed
to 5 or less.
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A second potential pitfall is that cross-sectional independence is
a regularity condition for these tests. Transforming the observations
by subtracting off the cross-sectional means will leave some residual
dependence across individuals if common time effects are generated by
a multi-factor process. This residual cross-sectional dependence can
potentially generate errors in inference.

A third potential pitfall concerns potential small sample size dis-
tortion of the tests. While most of the attention has been aimed at
improving the power of unit root tests, Schwert [126] shows that there
are regions of the parameter space under which the size of the aug-
mented Dickey—Fuller test is wrong in small samples. Since the panel
tests are based on the augmented Dickey—Fuller test in some way or
another, it is probably the case that this size distortion will get im-
pounded into the panel test. To the extent that size distortion is an
issue, however, it is not a problem that is specific to the panel tests.

2.6 Cointegration

The unit root processes {¢:} and {f;} will be cointegrated if there ex-
ists a linear combination of the two time-series that is stationary. To
understand the implications of cointegration, let’s first look at what
happens when the observations are not cointegrated.

No cointegration. Let { = g1+ €4 and g = 41 + €4+ be two inde-
pendent random walk processes where €y o N(o, o2) and
€t w N(0,07). Let z, = (2, 2:)" follow a stationary bivariate pro-
cess such as a VAR. The exact process for z;, doesn’t need to explicitly
modeled at this point. Now consider the two unit root series built up

from these components

@ = g+ 2,
fo = &t zp (2.87)

Since ¢; and f; are driven by independent random walks, they will drift
arbitrarily far apart from each other over time. If you try to find a
value of 3 to form a stationary linear combination of ¢; and f;, you will





