
1 Introduction and
motivation

� Panel data (or longditudinal data) refers to a
cross-section repeatedly sampled over time,
but where the same economic agent has been
followed throughout the period of the sam-
ple.

� Examples.

– firm or company data

– longditudinal data on patterns of individual
behaviour over the life-cycle.

– comparative country-specific macroeconomic
data over time.

� Common feature:

– the sample of individuals� is typically rel-
ative large

– the number of time periodsA is generally
short.
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� Why use panel estimation methods? Can an-
swer questions not possible either from a cross-
section context or with a pure time series.

� Greene (1991) we observe 50 per cent of a
cohort of women to work. Two possible in-
terpretations

– 50 per cent of women work on average each
period, or .

– the same50 per cent of women may work
each period. Different interpretations, dif-
ferent implications for policy.

� There are nevertheless difficulties inherent
in data sources with a longditudinal element.

(a) attrition

(b) non-randomness of the sample.
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2 Why use panel data
methods?

� increased precision of regression estimates

� the ability to control for individual fixed ef-
fects

� the ability to model temporal effects without
aggregation bias

3 Fixed effects panel data
models

+�| ' k� n %3�|q n ��|c (1)
for � ' �c ����c � individuals over| ' �c ���c A
time periods.

� Model includes

– an individual effectk� (constant over time).

– marginal effectsq for %�| (common across
� and|�.
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3.1 The pooled Ordinary Least
Squares (OLS) estimator

� the simplest approach to the estimation.

� individual effectsk� are fixed and common
across economic agents, such thatk� ' k for
all � ' �c ���c � . .

� OLS produces consistent and efficient esti-
mates ofk andq.ek ' + � eq%
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|'� %�| and

� %�| ' %�| � % (similarly for +).
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Notice

�@oEeq� ' �@oE��|�S�
�'�

SA
|'� h%2�| (3)
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1.Bias from ignoring fixed effects

Biased slope when 
fixed effects are ignored

Group 1

Group 2

α1

α2

yit

xit

E(yit| xit ) = α1+β xit

E(yit| xit ) = α2+β xit

3.2 The Within-Groups (WG)
estimator

� can be used if individual effectsk� are fixed
but not common across� ' �c ���c �

� eliminates the fixed effectk� by differencing
.
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� Let +� ' A��
AS
|'�

+�| and

� %� ' A��
AS
|'�

%�|.

� Define
%��| ' %�| � %�

and+��| ' +�| � +�c

� Then
+� ' k� n %3�q n ���

� Subtracting from (1) gives
+�|� +� ' Ek��k��n E%�|�%��

3qnE��|����

or
+��| ' %�3�|q n ���|� (4)

� Hence,

eq`C '
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2.The Within-Groups estimator

α1

α2

y*
it

x*
it

E(y*
it| x*

it ) = β x*
it
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3.3 Variance of WG estimator

�
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� Can show that
7%% ' 7�

%% n 7K
%%�

Given that�@oE���|� ' EA��
A
��@oE��|�cwe have

�@oEeq`C� '
�@oE���|�S�
�'�

SA
|'� h%2�|

(6)
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(8)
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3.4 Drawback with the
Within-Groups estimator

� eliminates time-invariant characteristics from
a model of the form

+�| ' k� n %3�|q n 53�B n ��|

3.5 The Least Squares Dummy
Variable (LSDV) estimator

� Define a series of group-specific dummy vari-
ables_}�| ' �E} ' ��.

� This gives
+�| ' k� n %3�|q n ��|c

' k�_��| n k2_2�| n ��� n k�_��| n %3�|q n ��|�(9)

� Estimate by standard OLS yieldingequ7(�T .

� A test for individual effects? Under the null,
k� ' k2 ' ��� ' k�

� Test using subset-F statistic

8 '
-2

(T �-2
R

�� -2
(T

�
�A �� � &

� � �
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� Distributed8���c�A���& under the null of
equality ofk�� .

3.6 The Two-Way Fixed Effects
Model
.

+�| ' k� n �| n %3�|q n ��|c
where�| represents the (fixed) time effects

� Include time dummies5r�| ' �Er ' |� to
give
+�| ' k�_��| n k2_2�| n ��� n k�_��|

n}252�| n ��� n }A5A�| n %3�|q n ��|�

4 The random effects model
(REM)
The fixed effects model is appropriate when
differences between individual agents may rea-
sonably be viewed simply as parametric shifts
in the regression function itself. This might
be considered reasonable if the cross-sectional
used in estimation represents a broadly exhaus-
tive sample of the population of economic agents,
as might be the case in a study which covers a
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full sample of countries, or in a study of the
performance of firms in a particular industry,
where the sample of firms represents a broadly
complete coverage of those within the industry.
If, on the other hand, the cross-section is drawn
from a larger population (so that the sample of
cross-sectional agents may not reasonably be
considered exhaustive) then it may be more ap-
propriate to view the individual-specific terms
in the sample as randomly distributed effects
across the full cross-section of agents. Defin-
ing k� ' k n ��, where�� has a zero (uncon-
ditional) mean, this would suggest a random
effects specification of the following form;

+�| ' k n %3�|q n ��| n ��� (10)
Here, �� represents an individual disturbance
which is fixed over time. The following as-
sumptions relate to the random components in
the model;

.E��|m��� ' f

.E�2�|m��� ' j2
�

.E��m%�|� ' f for all �c |
.E� 2� m%�|� ' j2

�

.E��|��� ' f for all �c |c �
.E��|��r� ' f for � 9' � or | 9' r
.E����� ' f for � 9' ��
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Among these assumptions, perhaps one of the
more restrictive relates to the conditional ex-
pectation.E��m%�|�cwhich is assumed to be zero
for the simple random effects model. This may
not be supportible, particularly in light of the
fact that (10) does not contain any time-invariant
characteristics specific to each individual in the
sample (Examples: gender, education, paren-
t’s education), and ought at the very least to be
tested.

4.1 The Generalised Least
Squares (GLS) estimator
To estimate the linear random effects model (some-
times called the variance components or ran-
dom components model) requires a Generalised
Least Squares approach to deal with the more
complex error structure inherent in (10) com-
pared with the fixed effects model. To see this,
consider the characteristics of the combined er-
ror term��| ' ��| n ��� It is certainly true that
.E��|� ' f� However,

.E�2
�|� ' j2

� n j2
� for all �c |

.E��|��r� ' j2
� for all | 9' r

.E��|��r� ' f for � 9' � or | 9' r .
So, if we collect theA disturbances for individ-
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ual� in a vector of the form�� ' E���c ��2c ���c ��A �
3c

we have that
.E���

3
�� ' lc

where

l '
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�
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� j2
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� j2

� � j2
�
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� j2

� j2
� n j2

� � j2
�

� � �
j2
� j2

� j2
� � j2

� n j2
�

4
FFFFD �

For the full panel of observations, the covari-
ance matrix of the�A vector of disturbances
� ' E��c �2c ���c ���

3 may be derived as

T
E�A%�A �

'

3
EEEEC

l f f � f
f l f � f
f f l � f

� � �
f f f � l

4
FFFFD

' U� 
 l (11)
whereU� is the identity matrix of dimension�
and
 represents the Kronecker product. Let
t represent a stacked vector of+�| formed in
a similar fashion to� (with a similar structure
for f). The full system

t ' fq n � (12)
may therefore be estimated by Generalised Least
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Squares, given the structure of the covariance
matrix �T � Generally, GLS estimation of a re-
gression of the form (12) requires a transfor-
mation to remove the non-standard structure of
the covariance matrix.E��3� ' T . We de-
fine the weight matrix� ' T �4

5c and trans-
form (12) by premultiplication, to give

�t ' �fq n ��
or

t � ' f�q n ���
Note now that

.E����3� ' .E���3� �
' ��.E��3��
' ��T��
' U�A

which has common variances across� andA .
So, with knowledge of� the GLS estimators
of the regression function (12) may be derived
as eqCu7 ' Ef 3T ��f����f 3T ��t� (13)
Do recall, however, that we were required to
assume that.E��m%�|� ' f in the If.E��m%�|� 9'
f then the GLS estimator is not consistent.

For the random effects model, one can gener-
ate a specific form for the weight matrix� '
T �4

5� Given thatT �4

5 ' U� 
 l�4

5 , we can
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rewrite (11) as
T ' U� 
 l

' j2
�U� n j2

� ��
3

where� represents an� -vector of ones. This
allows us to derive the form ofl�4

5 as

l�4

5 ' U� �
w

A
���3

where
w ' ��

j�

A Ej2
� n j2

��
4

5

�

So, the appropriate transformation for the ran-
dom effects model is to premultiply each+� '
E+��c ��c +�A �

3 byl�4

5 to give

+�� ' l�4

5�+�

'

5
99997
+�� � w+�
+�2 � w+�
�
�
+�� � w+�

6
::::8 c

with similar transformations to generate each
%�� �
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4.2 The Breusch-Pagan Lagrange
Multiplier test
The Breusch-Pagan LM statistic provides a test
of the random effects model against the pooled
OLS model given by (2). The specific hypoth-
esis under investigation is the following:

Mf G j� ' f
M� G j� 9' f�

From inspection of (11) one can see thatT '
j2
� �U�A under the nullj� ' fc so that the REM

reduces to a pooled OLS regression. The test
of this hypothesis, based on OLS residualse��|
from the pooled regression model, requires the
u� statistic

u� '
�A

2EA � ��
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Under the null, this statistic should be distrib-
uted as a�2

��

4.3 The Hausman Test
We may be interested in comparing directly the
random effects estimatoreqCu7 with the fixed
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effects estimatorequ7(�T . As noted above, in
the presence of correlation between the regres-
sors%�| and individual effects�� the GLS esti-
mator is inconsistent, whilst the OLS estimatesequ7(�T are consistent. If.E��m%�|� ' f on the
other hand, the GLS estimator is consistent and
efficient whilst the OLS estimator is consis-
tent but inefficient. This motivated a test pro-
posed by Hausman (1978), who constructed a
test based on the difference betweeneqCu7 andequ7(�T . He noted that, under the null, the
variance of the differenceeqCu7 �equ7(�T may
be derived as
�@oEeqCu7 � equ7(�T � ' �@oEeqCu7� n �@oEequ7(�T �� SJ�E

' �@oEeqCu7�� �@oEequ7(�T �
' P, say,

since
SJ�EeqCu7�equ7(�T c equ7(�T � ' SJ�EeqCu7c equ7(�T ���@oEequ

The Hausman test of the null of no correla-
tion can therefore be conducted using the Wald
statistic
` ' EeqCu7� equ7(�T �

3eP��EeqCu7� equ7(�T �
which is distributed as a chi-squared with& de-
grees of freedom under the null,& being the
number of regressors in%�|.
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