1 Introduction and
motivation

e Panel data (or longditudinal data) refers to a
cross-section repeatedly sampled over time,
but where the same economic agent has been
followed throughout the period of the sam-

ple.
e Examples.

— firm or company data

— longditudinal data on patterns of individual
behaviour over the life-cycle.

— comparative country-specific macroeconomic
data over time.

e Common feature:

— the sample of individuald’ is typically rel-
ative large

— the number of time periods is generally
short.



e \Why use panel estimation methods? Can an-
swer guestions not possible either from a cross-
section context or with a pure time series.

e Greene (1991) we observe 50 per cent of a
cohort of women to work. Two possible in-
terpretations

— 50 per cent of women work on average each
period, or .

— the sameb0 per cent of women may work
each period. Different interpretations, dif-
ferent implications for policy.

e There are nevertheless difficulties inherent
In data sources with a longditudinal element.

(a) attrition
(b) non-randomness of the sample



2 Why use panel data
methods?

e increased precision of regression estimates

e the ability to control for individual fixed ef-
fects

e the ability to model temporal effects without
aggregation bias

3 Fixed effects panel data
models

Yir = 04 + 2,0 + wi, (1)
for: = 1,...., N individuals overt = 1,...,T
time periods.

e Model includes
— anindividual effecty; (constant over time).

— marginal effect®’ for x;; (common across
i andt).



3.1 The pooled Ordinary Least
Squares (OLS) estimator

e the simplest approach to the estimation.

e individual effectso; are fixed and common
across economic agents, such that « for
all:=1,....N..

e OLS produces consistent and efficient esti-
mates ofn andg.

o =7y— 0T

=

B _ 1=1t=1 (2)

where

7= (1/NT).> " S  z;and
o v;; = x;; — x (Similarly for y).
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1.Bias from ignoring fixed effects
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3.2 The Within-Groups (WG)
estimator

e can be used if individual effects; are fixed
but not common across= 1, ..., N

e eliminates the fixed effeet; by differencing
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e Define

%k [—
Lig = Tit — Xy

andy;, = yi — Ui,
e Then
U= +T,0+ T
e Subtracting from (1) gives
Yit — U = (0 — 0g) + (x3 — Ti)' B+ (wir — ;)

or
y;(t = x;kt/ﬁ + u;'kt- (4)
e Hence,
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2.The Within-Groups estimator




3.3 \Variance of WG estimator
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e Can show that

Giventhawar(u},) = (£:=2)var(u;), we have
WG var(uj)
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3.4 Drawback with the
Within-Groups estimator

e eliminates time-invariant characteristics from
a model of the form

Vit = o + 1,0 + 2,0 + Uy
3.5 The Least Squares Dummy
Variable (LSDV) estimator

e Define a series of group-specific dummy vari-
ablesd,;; = 1(g = 1).
e This gives
Vit = 0+ 23,0 + Wi,
= aidiit + aadoi + ... + andyit + 25,0 + 49)
e Estimate by standard OLS yieldi@SDCV.
e A test for individual effects? Under the null,
] = Q9 = ... = QN
e Test using subset-F statistic
~ Rpy— R, NT — N —k
1-R%, N-1
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e Distributed Fiy_1,ny7—n—; under the null of
equality ofq;. .

3.6 The Two-Way Fixed Effects

Model

Yir = ; + Y + 2,0 + Ui,
wherev; represents the (fixed) time effects

e Include time dummieg,; = 1(s = t) to
give
Yir = oadii + aodo + ... + andy
+g220it + ... + grzrie + Ty + wir.

4 The random effects model
(REM)

The fixed effects model is appropriate when
differences between individual agents may rea-
sonably be viewed simply as parametric shifts

In the regression function itself. This might

be considered reasonable if the cross-sectional
used in estimation represents a broadly exhaus-

tive sample of the population of economic agents,
as might be the case in a study which covers a

13



full sample of countries, or in a study of the
performance of firms in a particular industry,
where the sample of firms represents a broadly
complete coverage of those within the industry.
If, on the other hand, the cross-section is drawn
from a larger population (so that the sample of
cross-sectional agents may not reasonably be
considered exhaustive) then it may be more ap-
propriate to view the individual-specific terms
In the sample as randomly distributed effects
across the full cross-section of agents. Defin-
Ing o; = o + 7;, Wherer; has a zero (uncon-
ditional) mean, this would suggest a random
effects specification of the following form;

yir =+l +uy + 7. (10)
Here, 7; represents an individual disturbance
which is fixed over time. The following as-

sumptions relate to the random components in
the model;

(uzt’Tl) =0

E(uj|m) = o,

E(7i|xy) = Oforalli,t

E(7}|zi) = of

E(uyt;) = Oforalli,t,j

E(uju;s) = 0fori £ jort # s
E(riT;) = 0fori # j.
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Among these assumptions, perhaps one of the

more restrictive relates to the conditional ex-
pectationt(7;|x;;), which is assumed to be zero

for the simple random effects model. This may
not be supportible, particularly in light of the
fact that (10) does not contain any time-invariant
characteristics specific to each individual in the
sample (Examples: gender, education, paren-
t's edgcation), and ought at the very least to be
tested.

4.1 The Generalised Least
Squares (GLS) estimator

To estimate the linear random effects model (some-
times called the variance components or ran-
dom components model) requires a Generalised
Least Squares approach to deal with the more
complex error structure inherent in (10) com-
pared with the fixed effects model. To see this,

consider the characteristics of the combined er-
ror termw;; = u;; + 7;. Itis certainly true that

E(w;) = 0. However,
E(w3) = o +o*forall i, t
E(wywis) = o*forallt # s
E(wyw;s) = 0fori # jort #s.
So, if we collect thd’ disturbances for individ-
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uali in a vector of the formw; = (w;1, wyo, ..., w;r)’,
we have that

/
E(ww;) = €,
where

(0 + 02 o2 o 02 \

opm 02+ 02 o2 . 0?2

_ | 52 2 o2 o2

Q T 7' 07' u + U 7'
K (o 03 03 : 02 =+ 03 )

For the fuII panel of observations, the covari-

ance matrix of theVl vector of disturbances
w = (wy, wy, ..., wy) may be derived as

Q00 .0
(090 0\
v =100%.0
(NTxNT)
\0 00 .Q)/
= Iy®Q (11)

wherely is the identity matrix of dimensioV
and® represents the Kronecker product. Let
Y represent a stacked vector gf formed In
a similar fashion tav (with a similar structure
for X). The full system
Y =X0+w (12)
may therefore be estimated by Generalised Least
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Squares, given the structure of the covariance

matrix V. Generally, GLS estimation of a re-
gression of the form (12) requires a transfor-

mation to remove the non-standard structure of
the covariance matri¥/(ww’) = V. We de-

fine the weight matrixP = V‘%, and trans-
form (12) by premultiplication, to give
PY = PX(3+ Pw

Y* = X*8 + w*.
Note now that
E(w*w"”) = E(Pww'P)
P.E(ww")P
PV.P
InT

which_has common variances acrossnd’'.
So, with knowledge of” the GLS estimators

31; the regression function (12) may be derived

or

Bers = (XV'X)LX'VTY.  (13)
Do recall, however, that we were required to
assume thﬂE(TZ’xzt> = Ointhe If £(7;|x;;) #

0 then the GLS estimator is not consistent.
For the random effects model, one can gener-

ate a specific form for the weight matriX =
V=3, Given thatV/ 2 = Iy ® Q3 , wWe can
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rewrite (11) as
V = Iy®Q
= oIy + oAi
wherei represents arv-vector of ones. This
allows us to derive the form &2 as

1 0
Q_§ — [N - Tii/

Ou
T(02+ 02)1
So, the appropriate transformation for the ran-
dom effects model is to premultiply eagh=

(yi1, -, yir) DY (7 to give

y; = Oy,
i Yi1 — (9?@ |
Yio — ng

where

| YiNn — 9@' |
with similar transformations to generate each

Ty
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4.2 The Breusch-Pagan Lagrange
Multiplier test

The Breusch-Pagan LM statistic provides a test
of the random effects model against the pooled
OLS model given by (2). The specific hypoth-
esis under mvestlgatlon IS the following:

H, : =0
HA : O'T 7é 0.
From inspection of (11) one can see that=

o2. Iy under the nulb, = 0, so that the REM
reduces to a pooled OLS regression. The test
of this hypothesis, based on OLS residuals
from the pooled regression model, requires the
LM statistic

(N /T 2
Uy
NT =1 <t_21 t) L 1

LM = -
AT—1) | NI,

Under the null, this statistic should be distrib-
uted as a.

4.3 The Hausman Test
We may be interested in comparing directly the
random effects estimatgi;; s with the fixed
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effects estimatof;spcoy. As noted above, in
the presence of correlation between the regres-
sorsz;; and individual effects; the GLS esti-
mator IS iInconsistent, whilst the OLS estimates

Brspcy are consistent. I (7;|z;;) = 0 on the

other hand, the GLS estimator is consistent and

efficient whilst the OLS estimator is consis-
tent but inefficient. This motivated a test pro-

posed by Hausman (1978), who constructed a
test based on the difference betwekn s and
Brspcy - He noted thai, undeAr the null, the

variance of the differencé; s — 8r.spcy may
be derived as

var(Bars — Brspcv) = var (BGLS) + var (BLSDCV) — cov(

= UCLT(BGLs) — UCL?“(BLSDCV)
= ), say,
since.

cov(Bars—Brspev, Brspov) = cov(Bars, Brspov)—var(B

The Hausman test of the null of no correla-
tion can therefore be conducted using the Wald

StatIStIC

W = (5GLS Brspev)E " (Bars —Brspov)
which is distributed as a chi-squared witlde-

grees of freedom under the nukll,being the
number of regressors ;.
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