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This paper aims to clarify the interpretation of exogeneity 

tests of the type Sargent [1973] and I [1972] among others have 

applied, as well as the closely related tests proposed or used 

by Caines and Chan [1975], Granger [1969], Pierce [1977], Haugh 

[1972] and others.l ! 

A disquisition on this topic is capable of generating fierce 

or long-winded responses from economists, in my experience. A 

good part, though not all, of this sort of dispute is purely 

semantic. Words like "causal", "exogenous", "structural", and 

"behavioral" inevitably come into use in the discussion, and 

economists appear to have strong and divergent opinions on the 

"natural" or "standard" meanings of those terms. Because these 

words do crop up, this paper sets out in Section 2 to define them. 

The definitions in Section 2 attempt to parallel the usage of 

earlier writers who have given these terms precise meaning Simon 

[1952], Koopmans and Bausch [1959], Hurwicz, [1962], Granger [1969], 

and engineering literature (Zemanian [1972]), e.g. However many 

readers are likely to find the terminology of Section 2 artificial 

or strange. While I am happy to discus~! any possible aiternative 

1 This paper has changed substantially since the draft which 
was presented at the November, 1975 Conference. Section 1 expands 
a few paragraphs with appeared previously in the middle of the 
paper without special emphasis. In Section 2, the notion of a 
"behavioral" relation is new since the earlier draft. In Section 
3, the "errors in variables" and "perfect market" mechanisms for 
generating causal orderings were not discussed in the earlier draft, 
and the discussion of particular empirical examples is new. Thus 
the discussants' remarks could not have dealt with these aspects 
of the paper. 

2 For about 15 minutes. 
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equally precise semantic scheme, the reader who finds Section 2 

irritating or opaque should recognize that it is purely instrumen­

tal. We need precise definitions of terms in order to discuss, in 

Section 3, a variety of possible types of economic model which 

imply the existence of one-way Granger causal orderings. Inter­

preting the results of exogeneity tests when the null hypothesis 

of exogeneity is accepted requires consideration of which type of 

economic behavioral mechanism which can generate exogeneity is 

likely to have done so in the instances at hand. 

Section 1 begins the paper by making a point which can be 

made without any preliminary expedition through the semantic swamps. 

When, as econometricians estimating models ordinarily do, someone 

asserts that a particular variable or group of variables is strictly 

exogenous in a certain regression, that assertion is, in time series 

models, testable. "Exogeneity" here i's given its standard econo­

metrics-textbook definition. Exogeneity tests are thus an easily 

applied test for specification error, powerful against the alternative 

that simultaneous-equations bias is present. The usefulness of these 

specification-error tests ought not to be controversial, and in 

particular is not connected to the controversial and complicated 

.analysis of Section 3. Section 3 discusses how we are to interpret 

the result that exogeneity is an acceptable null hypothesis. Section 

1 discusses the simpler question of how we interpret rejection of 

that null hypothesis. 

Probably most readers will prefer to look over Sections land 

3 first, returning to Section 2 only if Section 3 looks interesting 

enough to justify the effort. 



-3-

1. Exogeneity Tests as Specification Error Tests 

It is a maintained hypothesis underlying the Gauss-Markov 

theorem and the distribution theory ordinarily applied to gener­

alized least squares estimators that the right-hand-side variables 

in a regression equation are strictly exogenous, meaning that the 

expected value of the vector of residuals, conditional on the 

whole array of right-hand-side variables, is zero. To restate 

this mathematically, if our model is 

1) y=Xb+u, 

with y Txl, X Txk, u Txl, the hypothesis that X is 

strictly exogenous is the hypothesis that E[ujX] = O. Sometimes 

this "first-order independence" assumption is strengthened to 

complete independence of X and u, but the first-order version 

will be enough for us. If exogeneity holds for this model with 

sample size up to T+s, 

of (1) the variable 

then we can add to the right-hand-side 

Z, those t'th component is the t+s'th 

component of X, to get 

2) y = Xb + Zc + u. 

On the null hypothesis that (1) satisfies the assumptions of 

the Gauss-Markov theorem, (2) does also, with c = O. Testing 

c = 0 by standard methods thus tests the null hypothesis of strict 

exogeneityof X in (1). 

The argument so far has made no use of the notion that (1) 

should be a time series model. However, the test has good power 

against reasonable alternatives to exogeneity only if those altern­

atives make it likely that estimates of c in (2) will be 
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significantly non-zero. In some cross-section applications, the 

order of observations has no behavioral significance. Hence we 

have good reason to believe that the t'th vector of observations 

on y and X, (y(t),X(t», is independent of the s'th such 

vector for any t ~ s. Thus if, in the behavioral relation we 

purport to be estimating, E[uIX] ~ 0, the only possible route 

for dependence between u and X is dependence between X(t) and 

u(t). Dependence between X(t) and u(t), when u(t) is serially 

uncorrelated, will not generate a non-zero c in (2). In time 

series or in cross-section models where the ordering of observations 

is non-random, however, failure of exogeneity is likely to produce 

non-zero c, and the test will be effective. Of course, it is still 

important to understand what special circumstances might make c 

zero in (2) even though X is not exogenous in the behavioral 

relation under investigation. This issue is taken up in Section 3. 

As Shil+er points out in his discussion of this paper, least­

squares regression estimates and the usual associated asymptotic 

distribution theory can be justified without a strict exogeneity 

assumption. However, these alternative stochastic specifications 

(making the right-hand-side "predetermined" rather than exogenous) 

ordinarily rest on a different sort of a priori argument than exog­

eneity, and they also generally imply a different battery of specif­

ication error tests. Thus if a model fails an exogeneity test, it 

is not natural immediately to claim that the model is instead jus­

tified by an assumption that the right-hand-side variables are 

predetermined. A new behavioral argument would be required to 
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justify the predeterminedness assumption, and a new specification 

3/ error test suggests itse1f.-

For example, suppose we are estimating the supply function 

for wheat in the U.S. QUantity is regressed on price, under the 

argument that the wheat market is international, so that price 

f1uctations depend on world supply and demand, which are not strongly 

related to U.S. supply. An exogeneity test rejects the null hypothesis 

that price is exogenous. The natural conclusion is that world supply 

and demand do depend importantly on U.S. supply, or that u.S. supply 

is at least related to some of the same omitted variables as world 

supply and demand. But why not now claim that supply depends on 

last period's price and that last period's price is predetermined? 

This requires a new behavioral argument: first that there is no 

possibility of within-year supply response to price; then that omitted 

variables influencing supply and demand are unrelated; then that 

omitted variables which influence supply (i.e., the residuals in 

the supply equation) are serially uncorre1ated. The lack of serial 

correlation in supply equation residuals would appear to be a dubious 

a priori assumption, but it is a testable assumption, and testing 

for serial correlation in this specification plays the same central 

role as testing for exogeneity in the first specification. 

3phi11ipS [1956] pointed out a long time ago the conneGtions 
between assumptions on serial correlation properties of error terms 
and on orders of lag in behavioral equations which are required to 
justify a claim that right-hand-side variables are predetermined. 
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Semantics 

A. Causal Orderings as Recursions 

Using the central idea of Simon [1952] and generalizing it 

slightly, consider a space S of "outcomes" and two sets of 

restrictions on it characterized by the subsets A and B of 

S. A and B together produce the "result" A n B. Now con-

sider two spaces, X and Y, together with associated functions, 

PX' Py ' mapping S into X and Y respectively. The following 

definition covers many existing uses of "causal ordering" as special 

cases. 

Definition: The ordered pair (A,B) of restrictions on S deter-

mines a causal ordering from X to Y (equivalently, makes X 

causally prior to Y) if and only if PX(AnB) = PX(A) and Py(A) = Y. 

Paraphrasing, (A,B) makes X causally prior to Y if and 

only if A restricts X (if at all) without restricting Y, while 

the addition of B restricts Y (if at all) without further re-

stricting X. 

It should be clear that in this definition the causal ordering 

is a characteristic of the system (A,B) and the output space Y, 

not the result of AAB. Given a system (A,B) which does not 

make X causally prior to Y, we can always define B' = AnB, 

A' = -1 
P X (P X (AflB» , and y' = Py(A) , and (A' ,B') will by con-

struction make X causally prior to y' , yet (A' ,B') has the 

same result as (A,B). 

An example of a causal ordering is a pair of linear equations 

in two unknowns, one of which involves only one unknown. The space 
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S is Euclidean 2-space, X and Yare two copies of the real 

line, Px projects a point in S into its first co-ordinate, and 

Py projects a point in S into its second co-ordinate. The set 

A is the line determined by the first equation, which involves 

only X (a vertical line, if X is the horizontal axis), and 

B is the line determined by the second equation. 

Another example is a two-simultaneous-equation econometric 

model in Wold causal chain form. Here S is the space of joint 

distributions of the endogenous variables conditional on the pre­

determined variables; X is the space of marginal distributions 

(again conditional on predetermined variables) for the first endog­

enous variable; Y is the space of marginal distributions for the 

second endogenous variable; PX' Py project joint distributions in 

S into corresponding marginals; A is the equation involving only one 

endogenous variable and hence determining its marginal distribution; 

and B is the other equation, which specifies the conditional 

distribution of the second endogenous variable given the first. 

A third example is the triangular autoregressive representation 

of a bivariate covariance-stationary process (x(t),y(t», in which 

x is causally prior to y in Granger's [1969] sense. Here the 

space S is jOint auto covariance functions of the processes 

and yet), Y is the space of auto covariance functions for 

x(t) 

yet) 

alone, and X is the space of autocoveriance functions for x(t). 

The restrictions A are the first equation of the joint autoregressive 

representation, which is a univariate autoregressive representation 

for X. The set B is determined by the second equation of joint 

autoregressive representation. 
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Though here and in the remainder of the paper we will deal 

only with pairs (X,Y) of inputs and outputs, it should be clear 

that two-element orderings like those considered here can be 

4/ extended to n-element orderings in a natural way.-

B. Characterizing a relation as "causal" or "structural". 

In this scheme it is natural to think of A as a particular 

input, and of B as specifying the way inputs generate output. 

In the form of exogeneity test I used in my 1972 AER article it 

is natural to think of "causal priority of x" as a characteristic 

of the distributed lag regression of y on x, that is as a 

characteristic of B, not of B and A jointly. There is a 

nearly precisely corresponding usage in engineering and physics, 

where operators mapping "input" functions into "output" functions 

are characterized as "causal" or "non-causal" (or as "realizable" 

or "non-realizable") again without reference to any particular input. 

These characterizations of B, the input-output connection, as causal 

or non-causal arise from intuitive notions of what causal systems "in 

nature" must be like. The reason it seems plausible to define a 

causal ordering as we have is that in a system (A,B) with a causal 

ordering from X to Y it is natural to contemplate varying the input 

A, holding B fixed, and obtaining outputs Py(AnB) determined by A. 

Of course we can always undertake this experiment as a mathematical 

exercise, but the practical significance of the experiment depends 

4 E.g., (A,B,C) orders X, Y, Z in that order if (A,B) makes 
X causally prior to Y and (A, B, C) makes XxY causally prior 
to Z when the mapping Pxy : Pxy(s) = (Px(s), Py(s» is used to 
map S into XXY. 

.. 
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critically on whether there is in nature a mechanism corresponding 

to the set of constraints B, which would remain fixed while we 

varied A. Thus even though there will be many systems (A,B) 

which generate the same result AnB and imply different causal 

orderings, not all of them are of equal practical interest. The 

most interesting systems are those in which the input-output rela-

tion B is one which would in fact remain fixed if we varied A.if 

We will call such a B "structural", and a precise definition of 

this term follows. 

If variation of A is to be even formally possible, B must 

have a form which "accepts" variation in A. To be precise, we 

will say: 

Definition: The Set Bes accepts X as input to Y if for any 

ACS which constrains only X (i.e., any A such that 

(A,B) makes X causally prior to Y. 

Though similar notions are sometimes given the name "realizable", 

or "causal" i1;1 physical science literature, the formally explicit 

notion closest to that defined below seems to be Hurwicz's [1962] 

definition of "structural", so I use that word. 

Definition: The set B is structural for inputs X if B accepts 

X as input and when any set CcX is "true" (or is "implemented") 

then Py(Px-1 (C)nB) is true. 

In Hurwicz's [1962] formulation, the "inputs" considered in 

defining structural relations are mappings from one space of equation 

5The idea that causal orderings are at least implicitly linked 
to the possibility of varying the causally prior input has appeared 
before, in Simon [1952] and Koopmans and Bausch [1959], e.g. Here as 
throughout I am providing referenced only to papers I have encountered 
in unsystematic reading in this area. 
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systems into another. These mappings correspond to interventions 

of the form, e.g., "fix the coefficient on xi in the j'th equation 

at (]". The role of B is played by some set of equation systems 

to which the transform is applied. The input is interpreted as 

implemented when, e.g., a certain excise tax rate is fixed at (] , 

in which case a "structural" equation system must be one in which 

the coefficient on in the j'th equation system does in fact 

vary with the excise tax rate. 

Since the property of being "structural" is a property of the 

way we interpret the system as applying to the real world, not of 

the system's form, there is no way of proving that a system is struc-

tural by examining the system's form. We can test whether a system 

is structural by using it to predict the effects of an intervention, 

making the intervention, and observing the result. In this way we 

may prove the system is B£! structural, but there can be no guarantee 

that other interventions, or even the same intervention repeated, 

will be predicted well by the system just because one or several test 

interventions are predicted well. 

Nonetheless it may be possible to specify enough properties 

which we know a structural system ought to have to allow us to dis-

-tinguish potentially structural from surely non-structural systems. 

The use of such restrictions to distinguish non-structural systems 

is called "identification" in economics, "realizability theory" in 

some physical science applications. 

In any application where inputs and outputs are dated, it is 

sensible to assume that a structural relation for inputs must not 

be one which determines past outputs from future inputs. This notion 
I 
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has not received much prominence in writings on econometric method-

ology, because the hypothetical inputs with respect to which simul-

taneous equation models are identified are paradigmatically one-time 

transformations of a system which is assumed not to have been subject 

to intervention during the period of observation. We consider possible 

alterations of the supply or demand curve, e.g., in a system which 

has had stable supply and demand curves in the sample period. In 

this context there is no time-stream of inputs and outputs. Further-

more, econometricians might resist the idea that dating of variables 

can be used to formulate general restrictions on structural relations. 

Indeed it is possible for example that a structural relation between 

two endogenous variables in an econometric model could involve a two-

sided distributed lag. The claim that the conditional expectation of 

Yt given the past and future of x
t 

has non-zero partial derivative 

with respect to future x's precludes that conditional expectation 

from being a ~tructura1 relation only if variations in x are the 

inputs with respect to which the structure is claimed to be identified. 

In economics, there is more often than not no "variable" in the system 

whose time paths are the identifying interventions. 

The condition that future inputs should not determine past out-

puts is called "causality" in some physical applications. For example, 

an operator mapping input functions of time into output functions of 

time is termed "causal" if it determines Yt (the value of the out­

put function at t) from x (values of the input function) at s 

s < t. In the formal framework of this paper, we can define this 

causality property as follows. 
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Consider a family of spaces t ranging 
- + 

over the real line, where Xt is to be thought of as future inputs 

and Yt as past outputs. The corresponding functions PXt+ and 

Pyt- 'map S into x: and Yt ' respectively. 

Definition: The subset B of S is causal if and only if: 

1) For any t, B accepts Xt as input; and 

ii) t > r, 

causally prior to Y­r 

and (A,B) makes 

imply 

~ 
t 

Paraphrasing, if we attempt to feed into B an input which 

specifies characteristics of future inputs only, the result will 

contain no information about past outputs. 

Note that being causal in this sense is only a necessary con-

dition for an input-output mechanism to be structural. The mistake 

of treating this causality condition as sufficient for a relation 

to be structural is a version of the old post hoc ergo propter hoc 

fallacy. But, as we have already seen, causality of a relation is 

in this respect no different from any other identifying restriction. 

No characteristic of a relation's internal structure can guarantee 

that the relation is structural, because being structural is a 

characteristic of the way we connect the relation to reality, not 

a property of the relation by itself. 

C. Behavioral relations 

A reduced form of a standard econometric model in which govern-

ment policy variables appear as exogenous variables is both causal 

and structural relative to interventions which take the form of 

variations in the time path of the policy variable. (Of course 
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this is the usual interpretation of such models. Whether the re-

duced form is actually structural relative to such variations in 

policy may be a matter of dispute.) Nonetheless econometricians 

often talk and write as if reduced forms are not "structural". 

When structural systems are treated as different from reduced forms, 

the equations of the structural system are sometimes referred to 

as "behavioral,,6/ 

In this pattern of word usage, a "structure" is thought of 

as a system in which the hypothetical interventions defining what 

is structural are changes in the form of relations in the system. 

It is supposed that interventions which affect the form of only 

a subset of the full system of relations are possible, and "struc-

tural" equations are those which will remain fixed in form while 

interventions affecting other equations in the system are implemented. 

Leading examples of such "structural" systems are supply-demand 

models and Keynesian multiplier models. Each equation is taken to 

apply to the behavior of a particular homogeneous group of people 

or institutions. The "demand" equation is what remains fixed when 

we somehow alter the behavior of "suppliers". The "consumption" 

function is what re~ins fixed when we change the behavior of "investors". 

Reduced forms are not "structural" because they reflect the combined 

effects of behavior of distinct types of individuals or institutions. 

Lucas [1974] and others have recently pOinted out that a rela-

tion which is behavioral in this sense of applying to the behavior 

6"Behavioral" is also used, perhaps more frequently, to refer 
to any equation in a model which is not an accounting identity. 
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of a well-defined group need not be structural relative to altera-
, 

tions in the behavior of other groups (or sectors). In particular, 

a behavioral relation for a given group may reflect that group's 

methods of projecting the future behavior of other groups, and those 

projection methods are likely to change when the behavior of other 

groups changes.II 

Thus being behavioral is neither necessary nor sufficient to 

make a relation structural relative to an interesting class of 

possible interventions. Nonetheless econometricians will go on 

trying to estimate behavioral systems, because when a model has 

a behavioral interpretation it is usually much easier to guess how 

it will change when some definite disturbance to actual economic 

behavior of some sector occurs. Also, frequently models are esti-

mated to investigate behavior, without any direct policy application 

of the model in view. 

Causality, in the sense we are giving that term, is an important 

identifying restriction on dynamic behavioral relations. Such re-

lations ordinarily are meant to correspond to the decision rule of 

some class of economic agents. If we can distinguish variables 

taken as input by the agents from those determined by the agents (the 

outputs), we expect that the decision rule will be causal from inputs 

7 \ 
In fact, this "rational expectations" critique of use of standard 

systems of behavioral equations to project policy effects is not 
limited to situations where expectations are involved. The basic 
idea is only that certain variables (e.g. lagged price) are proxying 
for unobservable underlying quantities (e.g. expected future prices), 
and that the nature of the proxying relation depends on the behavior 
of other groups. But expectations are far from the only type of 
unobservable concept for which proxies are commonly used in econometric 
models. 
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to outputs. Thus in a model of a competitive market, where both 

suppliers and demanders take current and past prices as given in 

deciding on quantity, both supply and demand relations should be 

8/ causal from price to quantity.-

We have discussed four terms: "causal ordering", "causal", 

"structural", and "behavioral". The first two refer to properties 

of the logical structure of a model which may be plausible require-

ments if we are to contemplate treating the model as behavioral 

or as structural relative to variation in x as the identifying 

interventions. The controversy surrounding "causality" in economics 

tends to arise in situations where a model with a causal order from 

x to y or a model containing a relation which is causal for x 

as input fits some historical data, and it is then asserted that 

the model has a certain behavioral interpretation or can be used 

accurately to project the effects of varying the path of x. That 

is, the fit of the causal model to the data is used to buttress a 

claim that the model is behavioral or structural relative to vari-

ations in the path of x as identifying interventions. 

In the remainder of the paper we discuss the justification for 

and dangers in interpreting fitted models displaying Wold or Granger 

causal orderings as behavioral or structural. 

8This does not of course mean that we can estimate either rela­
tion by least squares. The fact that a relation is causal does not 
mean that the input into it is statistically exogenous. No one pre­
sumes that because farmers take price as given, the supply equation 
for wheat can be estimated by a least-squares distributed lag regres­
sion of quantity of wheat on price of wheat. This point might seem 
self-evident, were it not that macro-economists do sometimes seem to 
assume, e.g., that if firms take wages as given in setting prices, a 
regression of prices on wages will capture firms' price-setting decision 
rule. 
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3. Interpreting Wold and Granger Causal Orderings 

A. Orderings on linear dynamic systems. 

Consider now a dynamic, stochastic, linear, econometric model, 

3) 

00 

The "*" indicates convolution, being read all*yl(t) = E all(s)yl(t-s). 
s=-oo 

We will take the system to have been normalized with all(O) = 1 and 

a22 (0) = 1, and we will assume aij(s) = 0, all s < 0, i=1,2, 

j=1,2. This latter condition is natural because we would like the 

system to accept as input arbitrary initial conditions -- values 

for Yi(t), t < 0 and u. (t) 
1. 

t .! O. It is also natural in many 

applications to require, t~at (3) be causal when i=1,2 are 

jointly covariance stationary, (3) takes realizations of covariance 

stationary processes u as input and produces realizations of covari-

ance-stationary processes y as output, and past and future input 

and output are defined by, e.g., setting U as the values of 
t-

i=1,2, s<t. This amounts to the standard condition that the coefficients 

aij(s) form a stable operator.1/ 

9It bears repeating that the reason for imposing stability of 
the operator applied to y in (3) is not simply that we know that 
the real-world y is not explosive. Systems of the form (3) with 
the ai.(s) operator "unstable" may fit covariance stationary pairs 
of u, Jy processes. The "instability" of the a . (s) operator 
implies non-stationarity of y only if we impose !fie additional 
requirement that the system be causal with u as input and y as 
output. (For example, if the system is causal from stationary u's 
to stationary y's when we reverse the sign of the time index, then 
the left-hand-side coefficients will generally form an "unstable" 
operator, if instability is defined in the conventional way in terms 
of the absolute values of the roots of the characteristic polynomial.) 
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The system (3.) displays a Wold causal orderinglO/ if a2l (0)=0, 

and are serially uncorrelated, and ul and u2 are mutually 

11/ uncorrelated. The system displays a Granger causal ordering-- if 

a2l (s) - 0, all s, and ul(t) and u2(s) are mutually uncorrelated 

for all t, s. (Note that the possibility that ui(t), ui(s) are 

correlated is left open.) 

Each ordering implies a convenient statistical property for the 

first equation of (3). The Wold ordering implies that Y2(t) is 

uncorrelated with ul(s) for s~t, i.e. that Y2 is predetermined 

in the first equation. The Granger ordering implies that Y2(s) and 

are uncorrelated for all t, s, 1.e. that 12/ is exogenous-

in the first equation. The conditions that be predetermined or 

exogenous in the first equation are not equivalent to Wold and Granger 

causal orderings, because the second equation of (3) need not exist or 

take the form given in (3) in order for Y2 to be predetermined or 

13/ exogenous in the first equation.-- In fact by appropriate definitions 

of input and output spaces, it is possible to make the conditions that 

10 See Wold [1949]fora forceful presentation of the argument that 
structural models are likely to take a form with a Wold ordering. 

11 See Granger for a presentation of this notion of causal ordering. 
Granger's original definition is not confined to linear covariance­
stationary systems. 

12Some writers use the term "strictly exogenous" where we use 
"exogenous" to sharpen the distinction from "predetermined". 

l3The potential advantages and disadvantages of testing exogeneity 
without estimating the second equation of (3) are discussed in Sims [1975J. 
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Y2 be predetermined or exogenous in the first equation of (3) equiv­

alent to the condition that the first equation be causal in the sense 

defined earlier in this paper. Nonetheless in practice it can be 

helpful in organizing thought on the subject to think of exogeneity 

or predeterminedness as restrictions on a two-equation system. If 

there is a second equation of the form given in (3), and if ul ' u2 

are covariance-stationary, then Wold and Granger orderings are equiv-

alent to y 's 
2 

being predetermined and exogenous, respectively, in 

the first equation. 

The problem of whether and how to interpret Wold or Granger 

orderings as structural can arise in two guises. One of these is 

relatively familiar. Standard simultaneous equation models in most 

applications are implemented subject to numerous maintained hypotheses 

of exogeneity and predeterminedness. These maintained hypotheses are, 

at least in principle, generated by considering what we know about causal 

orderings in the real world phenomena being modeled, and translating 

those real world orderings into Wold or Granger orderings. This familiar 

problem of the criteria for making assumptions that variables are 

exogenous or predetermined was treated by Koopmans [195~ some twenty 

years ago, and published work on the subject has advanced little since 

then. The discussion below, though aimed at interpreting exogeneity 

tests, is relevant also to purely a priori analysis of exogeneity 

assumptions. 

The other guise of the problem arises when a model displaying a 

causal ordering has been shown to fit some sample of data and we must 

decide whether to interpret this historically observed Wold or Granger 
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ordering as structural or behavioral. One reason this form of the 

issue has not received much attention until recently is that with the 

Wold ordering, which entered the econometric literature earlier, the 

issue never arises in pure form. If and Y2 are jointly covariance 

stationary and have an autoregressive representation, then there is 

14/ always a system of the form (1) displaying a Wold ordering.-- Thus 

if we have no other identifying restrictions on (1), the demonstration 

that a system like (1) with a Wold ordering will fit the data is no 

evidence at all that the ordering is structural or behavioral. The 

structural or behavioral system could be practically any system of the 

form (1) and still imply that a Wold-ordered system would fit the 

historical data. This'does not mean that a Wold ordering is untestable; 

only that a Wold ordering can be tested only in ~onjunction with other 

identifying restrictions on the system. Thus debate over whether the 

estimated causal ordering is structural or behavioral is likely to be 

diverted into dispute over whether the other identifying restrictions 

are valid in the particular application under consideration. 

The Granger ordering, on the other hand, is all by itself a restric-

tion on the class of jointly covariance-stationary processes Yl' Y2 

which could satisfy (1). That this creates the possibility of testing 

the null hypothesis that Y2 is exogenous in the first equation without 

any other identifying restrictions as maintained hypothesis was pointed 

out early as 1963 by Hannan [1963], but the first applications of the 

idea in economics of which I am aware were those by myself [1972] and 

Sargent [1973]. When a Granger ordering can be shown to fit some 

14 
See Wold and Jureen [1952]. 
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historical data, and some plausible behavioral or structural inter-

pretation implies a Granger ordering, the problem arises of deter-

mining what other possible behavioral or structural models, if any, 

might have produced the observed good fit of a model with a Granger 

ordering. 

B. Generating Granger Orderings 

The leading type of behavioral system which generates a causal 

15/ ordering-- occurs when there are two behavioral relations in the 

system, with one of the relations isolated from the other and with one 

of the two dependent variables in the system occuring in only one of 

the two relations. Thus we may imagine weather and U.S. wheat production 

as determined by two behavioral relations, one describing farm behavior 

and one describing atmospheric behavior. Because the agents involved 

in the two relations are quite distinct, and because the atmosphere pre-

sumably pays' no attention to wheat prices or production in the U.S., it 

is natural to suppose that weather will be exogenous in the wheat supply 

equation. And of course we presume that the wheat supply relation is 

causal in our sense, so that only current and past weather helps deter-

mine current production; this is what guarantees equivalence of exogeneity 

with the Granger ordering. 

While this sort of reasoning is entirely standard, it is subject 

to some pitfalls which are not always recognized. In particular it 

lSOne is tempted to label orderings arising in other ways "spurious", 
as I did in an earlier draft of this paper. But the other types of 
beahvioral system generating orderings might themselves by the center 
of interest, in which case this "leading" type of system generates a 
spurious ordering. 
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rests on assumptions about the residuals in the two relations which 

are sometimes ignored. While we may agree that in a properly specified 

"atmospheric behavior" model u.s. wheat production would not playa 

significant part in determining rainfall, that rainfall be exogenous 

requires also that residuals in the two relations be unrelated and 

that residuals in the supply relation be unrelated to any of the deter­

minants of atmospheric behavior. Thus if, e.~., temperature affects 

wheat production, but is omitted from our explicit list of right-hand­

side variables in the supply relation, rainfall will not be exogenous. 

The supply equation residual will be related to temperature, which is 

in turn related to rainfall through the atmospheric behavior system. 

So long as the need to be explicit about assumptions on residuals 

is kept in mind, the foregoing method is a legitimate way to justify 

an exogeneity assumption, and it is certainly what explicitly or implic­

itly underlies the exogeneity assumptions in most econometric models. 

Econometricians are used to thinking in terms of modeling a p­

variate system with p behavioral equations. Recently, however, con­

siderable work has been done on models in which the error terms are 

given more complex structure not every "random" component is taken 

to be generated as the residual in a behavioral equation. Ordinarily, 

if we consider models with both "behavioral" random terms and (say) 

"measurement error" random terms, a complicated simultaneous equation 

structure is implied. It is possible, however, for some components of 

the "behavioral" error vector and of the "measurement error" to be 

negligibly small, in which case a p-equation system with a causal 

ordering may fit the data with some or all of the equations being non­

behavioral. 
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For example, suppose in a supply and demand system the supply 

equation has a negligibly small error term while the price variable, 

and only the price variable, is subject to substantial pure measurement 

error. That is, we have 

4) p .. a + bq + e
D 

p - c + dq 

p*- p + eM 

(demand) 

(supply) 

(measurement error). 

Eliminating the unobservable p and writing the model in a form with 

the presumably uncorrelated random terms 

the two equations, gives us 

and ~ on the right of 

5) p* = c + dq + ~ 

q = (a-c)/(d-b) + en/Cd-b). 

Clearly in this system q is exogenous in the first equation, which 

has the parameters of the supply equation. An exogeneity test would 

thus correctly suggest to us that we can recover a behavioral relation 

from a regression of p* on q. 

Whenever there is a very large measurement error in one variable, 

not in the other, the othet variable will tend to appear exogenous in 

an equation with the error-ridden variable on the left. Because the 

"behavioral" error is relatively small, the residual in such an equation 

is dominated by the measurement error. As the above example suggests, 

this situation need not cause any problems when we have some way of 

determin1ngfrom a priori considerations which (if any) of the 

behavioral relations in the system is recovered from the regression with 

error-contaminated variable on the left. Note that in the example above 

if there were an term in the supply equation, with and of 
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similar sizes, both small relative to ~,then q would still show 

very little correlation with the residual in a regression with p* on 

the left, but the coefficients in that regression would no longer have 

16/ a behavioral interpretation.--

An example of a causal ordering arising from measurement error 

occurred in my work [1974b]on manhours/output relations in manufacturing. 

Typically the estimated distributed lag relations, with monthly data, 

showed a tight relation. of manhours and output, with most of the response 

of one to the other completed within a month or so. ' The implied dynamics 

did not depend much on which variable appeared on the left-hand-side of 

the regression, and exogeneity null hypotheses were accepted for either 
I 

direction of regression. However, when deflated sales replaced industrial 

prod~ction as the measure of output, exogeneity tests were passed only 

with output on the left-hand-side, and the implied dynamics was substan-

tially altered if output was instead put on the right-hand-side. This 

pattern of results fits the hypothesis of substantial pure measurement 

error in deflated sales, and since the data on sales are, at the monthly 

level, based on a relatively small sample, there is independent reason 

for believing this hypothesis. 

l6It is perhaps unnecessary to point out that the foregoing 
paragraphs should not be summarized as, "The presence of measurement 
error makes spurious causal orderings likely." Only certain special 
structures in the measurement error generate a spurious causal order­
ing. If one economist claims he has found a causal ordering allowing 
him to estimate a behavioral relation by least squares, another econo­
mist wishing to refute him ought to show why measurement error of the 
required special structure is present, not just that measurement error 
of unspecified form is present. 
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In a perfect market for a durable commodity, price 

fluctuations must be unpredictable. This is a partial equil-

ibrium result ·and deserves a more careful statement, but the 

economic logic of it is fairly simple: if it were known that the 

price was going to rise by more or less than the interest rate, 

profit could be made either by withhol?ing stocks from the market 

now (in the case of a known ris~by more than the interest rate) or 

by selling from stocks now (in the case where the rise is known to 

be less than the interest rate). For such a commodity, any function 

of price of the form, e.g., rs p(t+s)-e p(t) should be unpredictable 

not only from past (before t) prices, but also from any information 

publicly available at t. Granger's [196~ original definition of a 

causal ordering was framed entirely in terms of series' predictive 
". 

properties relative to one another; from his original definition, it 

is easy to see that a price from such a perfect market must always be 

"causally prior" to any time series of publicly available information. 

Furthermore when a causal ordering arises from this mechanism, there 

is no presumption that regressions with price on the right-hand-side 

will be behavioral, even though they will pass exogeneity, tests. 

Exogeneity tests are thus a device for testing the perfect market 

hypothesis, so long as one avoids· being misled by "spurious exogeneity" 

arising from the other mechanisms which can generate exogeneity. On 

the other hand, one clearly should be skeptical of behavioral inter-

pretation of single-equation regressions, justified by an exogeneity 

test, with durable-goods prices on the right-hand-side. This is 

unfortunate, because an area of current research interest in which 
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some economists (e.g. Geweke [1975]) have applied exogeneity tests 

is behavioral modeling of price dynamics. It is likely that most 

prices are set in far from perfect markets, or apply to commodities 

which are not durable, or otherwise fail to meet the strict hypotheses 

of the perfect market price behavior proposition. When the perfect 

market hypothesis is appropriate, price should not only be exogenous, 

but should have an autoregressive structure of a particular form: 

The projection of p(t+s) on values of p at t and earlier should 

be rs 
e p(t) • If this autoregressive structure can be rejected, 

though p acts like an exogenous variable in certain distributed lag 

regression, than a behavioral interpretation of the regression becomes 

more plausible. 

Suppose we had a behavioral model in which one equation took the 

form: 

6) 

where Yl(y) is the minimum variance linear forecast of Yl (t) based 

on values of Yl(s), for s<t and is serially uncorrelated 

and uncorrelated with past values of Y2 or Then if 

are jointly covariance-stationary and have an autoregressive rep resent a-

tion, 
A 

Yl(t) will be a linear combination of past values of Y2 and 

Yl' allowing us to write 

Clearly ul(t) is serially uncorrelated and uncorrelated with past 

values of Yl , Y2• Now we can rewrite the right-hand-side of (6) as 

b ul (t) + u2 (t) • By construction, ul and u2 are correlated, if 

at all, only contemporaneously. Thus there is some constant a such 
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uncorre1ated and uncorre1ated with v2 (s) for all s. Thus, taking 

linear combinations of (6) and (7) we arrive at 

which has the form of (3) and implies a Granger causal ordering. 

Neither equation of (8) is likely to be structural, . though the 

first equation would be consistently estimated by least squares regres-

sion and would pass a test for exogeneity of Y2. 

The reason this example is interesting is that there are behavioral 

theories which lead to equations of the form (6). ,For example, suppose 

policy-makers know that a structural ~lation between Y1 and Y2 

exists, of the form 

Suppose further that policy-makers can set Y1 at any value they wish 

each period, subject to a "disturbance" u
1 

and to the fact that when 

they choose Y1 (t) they know Y1(s), Y2(s) only for s ~ t-1. In 

particular then they can use any rule of the form 

10) 

in forming Y1' subject to the condition that b
12

(0) = 0, with b
11 

(0) 

normalized at 1.0. 

Let us take the policy-makers to be minimizing a quadratic objective 

function of the form var[(g*Y2(t»2]. Now if form a linearly 
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regular covariance-stationary process, they will have a jOint moving 

average representation of the form 

11) 

where v1 ... ul - ul ' v2 • u2 - u
2 

are one-step-ahead forecast errors. 

The vector process vI' v2 will be serially uncorrelated.1l1 Assum-

ing that the optimal choice of aO) implies that the bij coefficients 

181 in (9) and (10) form a stable operator-- , (9), (10), and (ll)will jointly 

imp 1y tha t we can wri te 

12) (::J ... B-1*H* C) 
which in tum implies 

13) g*y ... f *v + 
2 1 1 f

2
*v

2 
• 

From the normalization rules g(O) = bl1 (0) = b22 (0) = 1, the fact 

that by construction H(O)'" I in(ll), and the fact that b12 (0) = 0, 

we can be sure that in (13) f 2(0) ... 1, f 1 (0) = -b 2l (0). Except for 

the requirement that the coefficient of vl(t) be one and that of 

v2 (t) be zero, however, equation (10) allows Yl (t) to be chosen to 

be an arbitrary linear combination of current and past vl(s), 

17 This is a version of the Wold decomposition of the process. See, 
e.g., Rozanov [1966 ]. 

18 This rules out some, but not all interesting cases. See Sims [1974a] • 

. 19To be strictly true, this result would require that VI and v
2 be expressible as linear combinations of current and past ul ' u2 ' i.e. 

that ul ' u2 have an autoregressive representation. However even when 
the autoregressive representation does not exist, it will be possible 
to make Yl approximate an arbitrary linear combination of past VI' v2 arbitrarily well by appropriate choice of coefficients in (10). 
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Then if b2l has a one-sided inverse under convolution (i.e., is 

"stable"), we can also make b2l*Yl equal to an arbitrary linear 

combination of current and past vl ' v2 except for the restriction 

that the coefficient on current vl be b2l (0) and that on current 

be zero. This in turn, through (9) implies that can be taken 

to be an arbitrary linear combination of current and past vl ' v2 

except that the coefficients on contemporary vl ' v2 must be -b2l (0) , 

1, respectively. Finally if g is invertible, the coefficients on 

right-hand side of (13) can be chosen arbitrarily except for the previously 

listed restrictions on the O-order coefficients. 

Now the variance of g*y 2 
co 2 2 

is s~O [fl(s) 011 + 2fl (s)f2 (s)012 + f 2 (s)022]' 

where 0 .. 
l.J 

is the covariance of Since the summand is 

non-negative for all s, the minimum clearly occurs with fl{s) = f 2 (s) = 0, 

all s :/: O. 

We have arrived at the conclusion that the following equation will 

hold: 

But this is precisely the form of equation given in (6), which we have 

already shown to imply that Yl and Y2 will fit a model of the form 

(3) displaying a Granger causal ordering. N.either of the equations of 

the model displaying the ordering will be (9) or (10), so the order-

ing is certainly not behavioral. (One of the equations of the ordered 

model will be (14), however, so if we recognized the situation we could 

at least identify g.) Furthermore, it is the policy variable which 

will d i h 1 d 
. 20/ appear secon n t e causa or erl.ng.--

20The likelihood that optimal control might generate causal order­
ings was first pointed out to me by Milton Friedman in private corres­
pondence. 
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Though this discussion has been framed in terms of an abstract 

"policy-maker", it might apply to a "representative decision-maker" 

as well. For example, employers setting a wage one period in advance, 

attempting thereby to achieve a target level of employment, might 

generate exactly such a structure, with causal ordering from employment 

to wages. 

Since the foregoing discussion has introduced assumptions here 

and there along the way, it may be worthwhile to summarize formally 

what has been demonstrated. 

Theorem 1 Suppose: i) (9) holds with b22 (0) = 1, b22 and b
2l 

both possessing one-sided inverses under convolution; ii) ul ' u2 

form a covariance-stationary process with an autoregressive representa-

tion; and iii) the coefficients of (10) are chosen so as to minimize 

Var[g*Y2 1, where g has a one-sided inverse under convolution. Then 

the resulting autocovariance structure for Yl' Y2 admits a Granger 

ordering from Y2 to with neither equation of the ordered system 

in general represented by (9) or (10). 

The assumptions of the theorem are in fact quite restrictive, 

and should not be read as implying that "optimal control generates 

causal orderings". Perhaps most restrictive is the requirement that 

the objective function involve Y2 alone -- the objective cannot 

be to keep Yl close to Y2' for example. Also restrictive is the 

requirement that the "information delay" be one period. If the 

d 1 i h . d d" d 21/ N h e ay s more t an one per10 , no or er1ng 1S generate.-- ote t e 

21 Though I have not studied the case ca~efully, I believe that if 
the optimal control problem is solved by policy-makers at a smaller 
time unit than applies to the fitted data, an approximate spurious 
ordering is likely to arise. 
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special nature of the disturbance in the policy rule (10): ul must 

be influenced on the policy variable which the policy-maker cannot 

eliminate, but which he does anticipate and attempt to counteract; 

ul cannot represent the effect of other policy-objectives or of im-

perfections in the process of policy-optimization. If is iden-

tically zero, the system becomes singular; the policy e9uation (10) 

can be estimated without error; no ordering arises. Finally it is 

by no means usual for us to have any good a priori reason to assume 

b2l to be invertible. Quite often, in fact, there will be a very 

small contemporaneous effect of Yl on Y2 (small b2l (O», which 

is likely to lead to b2l 's being non-invertible. 

Equation (6) can be paraphrased to say that Y2 depends on 

forecast errors in Yl plus an error term with certain properties. 

Behavioral relations of roughly this form have played central roles 

in some recent rational expectations macroeconomic models, e.g. 

Sargent [1976] and Lucas [1973]. Lucas asserts a "supply equation" 

of this form without an error term. Sargent exploits the exogeneity 

implications of (6) by assuming the required properties for the 
... 

error term arbitrarily. If Yl(t) is interpreted as the optimal 

forecast of Yl(t) given the past of Yl and Y2' and if it is 

assumed that the underlying behavioral relation has the form of (6) 
It 

but with Yl replaced by Yl ' 
... ... 

where Yl is a forecast based on 

the past of y 1 and and additional information, then (6) will 

hold and will have an error term with the required properties (see 

Shiller [1972]). However, the assumptions required to claim a causal 

ordering by this route seem to me as restrictive as those required 

to claim an order.ing resulting from optimal control. In particular, 
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the assumptions of perfect information after a one - "period" delay 

and the requirement that there be no residual in (6) except that due 

to imperfect measurement of the expectations variable Yl appear to 

me to be highly restrictive. In Sargent's application, to the labor 

market, they seem to me implausible. 

As I showed in [1972], the Granger ordering is equivalent in a 

covariance-stationary system to the requirement that the two-sided 

distributed lag regression of on puts zero-coefficients on 

future values of The condition thus appears related to analysis 

of "leads and lags", and it natura1~y occurs to people that leads and 

lags between two series can be generated by their common dependence, 

with different lags, on some third series, even where there is no 

behavioral causal-ordering between the two original series. 

Consider the system 

15) 

Even if and are independent of each other and of z (so 

that (15) becomes what Sargent and I elsewhere in this volume have called 

an "unobservable index" model), there are no conditions on and 

alone which guarantee that Yl and Y2 will satisfy a system like 

(1) with a Granger ordering. However, certain joint conditions on 

the ci and the covariance properties of z and the will imply 

G d 
• 22/ a ranger or er1ng.--

2~rivate conversation with Gary Skoog and unpublished work by 
John Geweke have been helpful to me on this topic. 
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The two-sided distributed lag regression of Yl on has 

-1 
coefficients given by R12*R22 ' where R12 (s) = Cov(Yl(t), Y2(t-s», 

-1 
R22 (s) = Cov(Y2(t), Y2(t-s», ~and R22 is the bounded inverse of R22 

under convolution23/ • Using (15) and a convenient assumption that 

and z are mutually orthogonal, we can write 

R (s) = Cov(z(t), z(t-s» z 

is the auto covariance function of z and Rv2 is the autocovariance 

function of The "'" notation is defined by f' (s) = f(-s). This 

yields fairly directly a sufficient condition for a Granger ordering: 

Theorem 2: If in (15) z, vI' and v2 are mutually orthogonal, if c2 

is invertible under convolution, and if c *R *c ' = ARv2 ' 2 z 2 
where 

is a constant, then and Y2 can be written in the form (1) with 

a Granger ordering from Y2 to 

Proof: The result follows when we rewrite the expression for g in 

the preceding paragraph as 

and substitute -1 
A c *R *c ' 2 z 2 

-1 , 
g = c *c *c *R *c '*(c *R *c + Rv2) 1 2 2 z 2 2 z 2 

for Rv2 • 

Theorem 2 is more interesting for the unlikeliness of its assump-

tions than for its positive result. The only likely example of a 

real-world case where its assumptions are plausible is where one is 

~ot dealing with time series at all, so that c2 ' R , 
z 

and Rv2 all 

23The inverse Fourier transform of the inverse of the spectral 
density of Y2' where this latter "inverse" is taken frequency-by­
frequency and is the inverse under ordinary multiplication. 

.. 

.. 



-33-

vanish for values of their arguments other than zero -- i.e., all 

variables are serially uncorrelated. In this case Granger orderings 

hold in both directions, to and to so it is 

-
easy to avoid the error of treating one of those orderings as structural. 

Theorem 2 does not give necessary conditions for generating 

spurious orderings from (15), however. Another kind of sufficient 

condition for an ordering is: 

Theorem 3: Suppose Y2 has a univariate representation as a finite­

order autoregression of order p, that z is a finite-order moving 

average process of order q, that is zero for s>r, and that 

z, and in (15) are mutually orthogonal. Then if 

vanishes for s ~ p + q + r, Yl' Y2 can be represented as display-

ing a Granger ordering from Y2 to 

Proof: Evident from inspection of -1 
g = c *R *C '*R 1 z 2 22' 

This theorem's assumptions are even more artificial than Theorem 

2's. 

The conclusion from this latter pair of theorems is that common 

dependence of Yl and on a third variable with different lags 

does not, in any natural way, tend to generate causal orderings. In 

fact, one might expect instead that testing for a Granger ordering 

would be a useful way to distinguish lead-lag relations which do not 

imply a behavioral causal ordering from those which do. 

The cases we have discussed to this point are, as far as I know, 

the leading examples of structural models which might generate spurious 

Granger orderings. They show clearly that it is a mistake to act as 

if a behavioral causal ordering is automatically implied when a Granger 

ordering fits the historical data. On the other hand, it seems clear 
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that there will be a large class of applications where, if a Granger 

ordering fits the data, the most plausible structure consistent with 

that empirical result will be one in which the ordering is behavioral. 

4. Conclusion 

We can summarize by applying the analysis of this paper to the 

subject matter of my earlier paper [1972] on money and income. Some 

monetarist economists claim that distributed lag regressions of GNP 

on a monetary aggregate capture a structural relation. It seems clear 

that the claim is that such a relation is behavioral, in the sense 

of describing the behavior of the rest of the economy in a two-equation 

system with the other equation describing the behavior of the Federal 

Reserve. (Of course, even if the GNP on M regression is behavioral, 

it might not be structural relative to systematic variations in policy, 

by a rational expectations argument.) For money to be exogenous in 

the rest-of-the-economy equation, it would have to be true that GNP 

does not feed back in to Federal Reserve behavior -- influences on 

GNP other than M must not be related to Federal Reserve behavior. 

While not self-evident a priori, the idea that GNP does not feed back 

in to Federal Reserve behavior is not a prio.ri unreasonable either, 

when one considers the shifting and conflicting policy objectives and 

economic theories under which the monetary authority acted in the post­

war period. This possibility is consistent with the results of the 

exogeneity tests in that earlier paper. 

Do the examples of Section 3 suggest a likely mechanism for a 

spurious M-to-GNP causal ordering? That is, is there an alternative 

explanation for an M-to-GNP ordering which would imply the GNP-on-M 

/ 

"I 

• 
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regression does not have the postulated behavior interpretation? The 

answer, in my opinion, is no. Money is not the price of a durable 

good. It is hard to see why there should be such greater measurement 

error in GNP than in M. For an optimal control model to produce an 

~to-GNP ordering would require that GNP be subject to control while 

M was the target variable, which seems implausible. There appears 

to be no good reason to believe money supply or demand should be an 

exact function of current and past one-step-ahead prediction errors 

in some other variable. While the list of mechanisms to generate 

causal orderings given in Section 3 is certainly not exhaustive, none 

of the possibilities listed there applies naturally to the money and 

GNP case • 

. Thus it appears that economists who do not believe that money on 

GNP distributed lag regressions are structural ought to be basing their 

argument either on rational expectations or on the straightforward, 

old-fashioned possibility of Type II error. As was pointed out in 

the original article, standard errors of estimate on the coefficients 

of future M in the GNP on M regressions are large. The null 

hypothesis, while acceptable at standard significance levels, could 

nonetheless be false. In other words, while the results of the GNP 

vs. M exogeneity tests may be characterized as fuzzy or ambiguous, 

there does not appear to be good reason to believe them likely to be 

spurious. 
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