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Econometrica, Vol. 39, No. 2 (March, 1971)

THE USE OF VARIANCE COMPONENTS MODELS IN POOLING
CROSS SECTION AND TIME SERIES DATA

By G. S. MaDDALA!

The paper argues that variance components models are very useful in pooling cross
section and time series data because they enable us to extract some information about the
regression parameters from the between group and between time-period variation—a
source that is often completely eliminated in the commonly used dummy variable tech-
niques. The paper studies the applicability and usefulness of the maximum likelihood
method and analysis of covariance techniques in the analysis of this type of model, par-
ticularly when one of the covariates used is a lagged dependent variable.

INTRODUCTION

THE USE OF analysis of covariance techniques in the problem of pooling cross
section and time series data has now become a common practice in econometric
work. Suppose we have data on N firms over T periods of time. The model usually
used in pooling procedures is

k
yi,-=Oti+Tj+ Z .Brxrij+ U;j (l= 1,2,N,]= 1,2,...T),
r=1

where o; are the firm “dummies,” 7; are the time ‘“dummies,” and x, are the
“covariates.”” One common argument that is made against the use of the dummy
variable technique is that it eliminates a major portion of the variation among both
the explained and explanatory variables if the between firm and between time-
period variation is large. In some cases there is also a loss in a substantial number
of degrees of freedom. Added to these is the basic problem that rarely is it possible
to give a meaningful interpretation to the dummy variables.

As a general approach to these problems, economists have now shifted their
attention to models which treat the «; (and ;) as random—in which case we
estimate, instead of the No’s, only two parameters, the mean and variance of the
distribution of the o’s (and similarly for the time effects).? As far as the estimation
of the slope parameters f’s is concerned, this procedure amounts to extracting
some information on the f’s from the between firm and between time-period
variation of the dependent and independent variables. We can also rationalize this
procedure of treating the «; and 7; as random by arguing that the dummy variables
do in effect represent some ignorance—just like the residuals u;;. There is no reason
to believe that this type of ignorance, which we might call “‘specific ignorance,”
should be treated differently than the “‘general ignorance™ u;;.

An earlier paper by Wallace and Hussain [4] analyzes this type of model and
compares it with ordinary least squares and least squares with dummy variables.

! This research has been financed by the National Science Foundation under grant GS-1884. I wish
to thank Marc Nerlove and Zvi Griliches for helpful comments. Responsibility for any errors is my own.
2 For a study of this sort, see Balestra and Nerlove [1].
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Wallace and Hussain do not, however, consider the case of lagged dependent
variables—a case that Nerlove is worried about [1,2,3]. The present paper
investigates some aspects of the analysis of variance components models that arise
from the use of likelihood methods and the presence of lagged dependent variables
as covariates. In particular the applicability and inapplicability of the usual
analysis of covariance techniques will also be discussed.

The plan of the paper is as follows: Section 1 presents the model and the proper-
ties of the generalized least squares (GLS) estimates for a model with only firm
effects. In Section 2 we study the behavior of the likelihood function and in Section 3
the applicability of the usual analysis of covariance techniques in the presence and
absence of lagged dependent variables. In Section 4 an example is given to illustrate
the nature of the biases discussed in Section 3. Section 5 presents an extension to
the case of random firm and time effects. Section 6 presents an extension of the
techniques to simultaneous equations methods. The final section presents the
conclusions of the paper.

1. THE MODEL AND THE GLS ESTIMATE

Suppose we have observations on N individuals over T periods of time. The
model we consider is y = X + u where y is an NT x 1 vector, X isan NT x k
matrix on k variables which may be exogenous or lagged dependent, fisa k x 1
vector, u an NT x 1 vector.

We can write the residuals as

Uij = W + 7; + vij,

where p; are the firm effects which are IN (0, 62), 7; are the time effects which are
IN (0,6?) and v;; are IN (0, 02). We assume the y;, 7;, and v;; to be independent.
For the purpose of using least squares methods and analysis of covariance tech-
niques we do not need the assumption of normality; nevertheless we will make it
since we need it for ML methods. Also, for ease of exposition, we will omit the time
effects. If this is done, we have

A0 ... 0
Euw) = Q = ¢* 4 0
0 0 A
where A is the T x T matrix
1 p ... p
p 1 p
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and 62 = 62 + 62, p = o%/c® It is evident that A = (1 — p)I + pee’ and hence
(11) /1_1 = llee, + /121

where A, = —p/(1 — p)(1 —p + Tp), 1, =1/(1 — p), and e is a T x 1 vector
with all elements unity. We can also write our model as

= X8+ u, (i=12...N).

Given the assumptions we make, the GLS estimate of g, if p is known, is
R N -1 N
= [z X;A“X,} [ > X’IA“ly,-].
i=1 i=1
Noting the expression for A~! given in (1.1), we see that

N N N
(1.2) 2 X;A_lXi = 11 Z X;‘ee’Xi + }.2 Z X:X
i=1

i=1 i=1

Define
N
=Z
N
? ; Xiee'X)),
I/Vx:o: = T;:x - Bxx’

with similar expressions for T, B,,, and W,,. These are familiar expressions in
analysis of variance. The matrix B,, contains the sums of squares and sums of
products between groups, W,, is the corresponding matrix within groups, and T,
is the corresponding matrix for total variation. Now (1.2) can be conveniently
written as

(13) B =W + 0B, 17 '[W,, + 0B,)],

where 0 = 1 + (4, T/A;) = (1 — p)/(1 — p + pT) = a2/(6? + To2).

We see immediately that for fixed N,as T — oo, we have § — Qand if (1A/NT)W,,)
and ((1/NT)W,,) have finite (non-null) probablhty limits, then plim § = plim
(1/NT)W,,)~ '(1/NT)W,,). But (1/NT)W,,)"(1/NT)W,,) is the least squares
estimate with dummy variables (hereafter to be denoted by LSDY). Also for fixed
Nand T;if p —» 0,then 6 —» 1,and § — Txx »y» Which is the ordinary least squares
(OLS) estimate. If p - 1,0 — 0, and - W ! W,,, which is the LSDV estimate.

In essence 6§ measures the weight given to the between group variation. In the
LSDV procedure, this source of variation is completely ignored. The OLS pro-
cedure corresponds to 6 = 1. Table I illustrates how 6 varies with p for T= 10
and T = 20. As the table indicates, in the lower range of p, errors in the estimation of
p will produce large changes in 6 and hence result in substantial errors in the
estimation of f, if the between group variation is large. The between group variation
is large, however, only when p is large, and in this range errors in the estimation of p
do not produce any substantial changes in 6.
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TABLE 1

T=10 T=20
p 6 p 0
05  .655 05 487
1 473 .1 .310
2 .286 2 .167
3 .190 3 .105
4 130 4 .070
5 .091 .5 .048
.6 .063 6 .032
7 .041 N .021
8 .024 8 .012
9 011 9 .005

Formula (1.3) in essence combines the between group regression estimate and
the within group regression estimate of 8 by weighting them in inverse proportion
to their respective variances. In case there are only exogenous regressors both these
estimates are evidently unbiased and the estimate of § given by (1.3) is the best
unbiased linear estimate (if p is known). It is thus evidently more efficient than the
LSDYV estimate or the OLS estimate. In case there are lagged dependent variables,
neither of these estimates is unbaised. It will be shown in Section 3 that in general
the biases of these two estimates run in different directions and the process of
combining the between group and within group regression estimates poses more
problems.

A strong intuitive argument can be made for the pooling procedure suggested
by (1.3). The usual procedures of OLS and LSDYV are somewhat all or nothing ways
of utilizing the between group variation. In the LSDV method, the between group
variation is completely ignored. In OLS, the between group and within group
variation is just added up. Usually, in pooling cross section and time series data,
a test of significance is applied to test whether the constant terms are significantly
different from each other. If the null hypothesis is rejected, one resorts to the
LSDV method. If the null hypothesis is not rejected, one uses OLS. The GLS
procedure implied in (1.3) is a compromise solution to this all or nothing way of
utilizing the between group variation. Thus the procedure of treating the individual
constant terms as random is a solution intermediate to treating them all as dif-
ferent and treating them all as equal. A similar argument can be made even for
those procedures that treat the slope coefficients as random.

2. ML ESTIMATION

If p is known, then the estimation of f is straightforward. The estimate is given
by (1.3), which is also the ML estimate. In case there are lagged dependent variables
among the regressors, we have to make some assumptions about the initial values
of the y’s, but this does not introduce any essential complications into this estima-
tion problem.
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If p is not known, two possibilities suggest themselves: (i) use the ML method;
(ii) use analysis of covariance techniques to get unbiased estimates of 62 and ¢ and
use these in a two-step GLS procedure. If lagged dependent variables are present,
procedure (ii) is ruled out because the analysis of covariance does not give unbiased
estimates of 62 and ¢Z. In fact the between group mean square is a seriously biased
estimate of the between group variance ¢? + To?. But some modifications of
this procedure will be considered later. The ML method can be applied even if
lagged dependent variables are present. However, a study of the behavior of the
likelihood function in this model would be very fruitful.

After differentiating the likelihood function with respect to 8, we obtain the
ML estimate of B as the expression given in (1.3), and substituting this in the
likelihood function we get

2 Tp
— 2log L = const + NTlogoZ + N log [1 + 1—_——;:'
2.1)

1
+ ?[u/;y + OByy - (VVyx + 6By.)c)(VVx.x + OBxx)..l(Vny + eBxy)]

where 0 = (1 — p)/(1 — p + Tp) and the other expressions are as defined earlier.
Differentiating this with respect to o2 yields

(22) NT&% = [VVyy + GByy - (VVyx + 6Byx)(w/;m + GBxx)_l)(u/;:y + OBxy)]

Hence, by substitution, the concentrated likelihood function in terms of p only is
given as

23) — 2log L = const + NTlogé? + N log [1 +1 7_7’p:|

This expression is now a function of p only. Differentiating this with respect to p
gives us the ML estimate of p. However, the expression is not easy to manipulate.
The behavior of expression (2.3) as p ranges from 0 to 1 can be more conveniently
studied by computing the derivatives of (2.3) with respect to 0 given in (2.1). Note
that as p increases from 0 to 1, § decreases from 1 to 0.

Nowlog [1 + (Tp/(1 — p))] = — log 0,and log 6 is a steadily increasing function
of 6. As for the behavior of 62, we have

d(NT82 )
(—59—) = B,, — [Byx(u/;cx + 6B,,) I(I’V;y + 0Bxy) — ([/Vyx + eByx)
X (Wyy + 0B,) " 'B(Wey + 0B,)~(W,, + 0B,)
+ (W,x + 6B, )(Wy, + 6B,,) 'B,,]

B,, B, |1
= [u’][ v ][ }

Bxy Bxx A-

where A = (W,, + 6B,,)"Y(W,, + 6B,,). Since the B matrix is positive definite,
this expression is greater than zero. Hence we have 62/60 > 0 or d log 62/06 > 0.
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Also noting that (04/06) = — [W,, + 0B,,]” '[B,,A — B,,], we have
0XNT62)/30% = 2[A'B,(04/00) — B,(04/06)] = —2(V'B,, — B,)
X [Wxx + OBxx]_l(Bxx’l - Bxy)

which is less than zero for 6 > 0.

Thus the first derivative of N T log 62 with respect to 0 is greater than zero and the
second derivative with respect to 6 is less than zero. In Figure 1, curve I shows the
behavior of NT log 62 (assuming 62 > 1) and curve II shows the behavior of log 6.
The position of curve Il is fixed. The position of curve I will vary but in any case, for
finite N and T, NTlog 62 has to be finite through the range 0 to 1 (as in curve III).

FIGURE 1

Three conclusions follow from this.

(i) The maximum of the likelihood function cannot occur at the boundary value
0=0o0rp=1

(ii) Since the maxima of the likelihood function correspond to the points where
the distance between curves I and II is minimum, the number of maxima will
depend on the relative curvature of the two curves. Since both the functions are
increasing at a decreasing rate, however, there can be at most two maxima for the
likelihood function in the range 0 < 6 < 1. (This implies that we have to guard
against one local maximum.)

(iii) If we confine 6 to the range 0 < 0 < 1, a necessary and sufficient condition
for the occurence of a boundary solution at 8 = 1 (i.e., p = 0) is

(%[Tlog 62 —logfly-; <O,
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ie.,

2.4) T,

w — & Ta > T[B,, — 20/B,, + o«'B, ]
where o = T'T,,,.

Note, however, that the ML estimate of p and the estimate obtained from the
analysis of covariance are not the same. Hence there can be situations when the
former method gives a boundary solution p = 0 whereas the latter method does
not, and conversely.

For instance, consider the case N = 25 and T= 10. If B,, = 113, B,, = 60,
B,, = 40, W,, = 264, W, = 40, and W,, = 40, then the analysis of variance esti-
mate of p is 0; but the likelihood function is increasing at p = 0 and hence the
ML estimate of p is greater than zero. On the other hand, if B,, = 83, B,, = 60,
B,, = 40, W,, = 240, W,, = 40, and W,, = 40, then the analysis of variance
estimate of p is greater than zero since condition (2.4) is satisfied, we get a boundary
solution at p = 0 by the ML method.

3. ANALYSIS OF COVARIANCE ESTIMATES

In the case where all the x’s are exogenous, we can easily show that both
the between group estimate B'B,, and the within group estimate W ,'W,, are
unbiased estimates of §. One could perform an analysis of covariance as shown
in Table II. If we denote the between group mean square by BMS and the within
group mean square by WMS, then WMS gives an unbiased estimate of ¢2 and

(BMS — WMS)/T gives an unbaised estimate of ¢32.

TABLE II
Source Covariance matrix B Residual sum of squares  Degrees of
freedom E(RSS/d.f.)
Between group B,B, B, BL!'B,, B,, — B,.B.'B,, N-1-k 0% + To?
Within group u/;’ynyvaxx VVx;I“/;y W/,'v_v - vy_;er;xl I/‘/;t:y N(T - 1) —k 0’3
Total T, T, T TLT, T, — T,.T5lT, NT—-1-k

There is no guarantee that the estimate of o7 will be positive. In fact this is the
familiar problem of negative variance components. One suggestion, common in
analysis of variance literature, is to put 62 = 0 if BMS < WMS, which amounts
to using the OLS estimate of f in this case. The other possibility is to say that the
WMS is high because it “captures” variation due to other omitted effects (e.g., the
time effects, if they are not already included), in which case the proper solution is to
go back and examine the model and correct it for the omitted variables.

In any case, as was pointed out earlier, the § obtained by pooling the between
group estimate and the within group estimate using the variables estimated from
the analysis of covariance does not give the ML estimate. The estimate we will be
using is

(31) B =[Wey+ 0B, '[W,, + 0B,)]
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where 8 = 62/(T62 + 42). We can write f = B + [W,, + 0B, ] '[W,, + 0B,,].
Since the estimates of ¢2 and (To? + o?Z) are obtained from the least squares
residuals from the within group and between group regression, they can be easily
shown to be independent of W,, and B,, and hence it will follow that E(§) = .
Thus the GLS estimate is unbiased even if the variance components (and hence the
covariance matrix of the residuals) are estimated.

In the presence of lagged dependent variables (the case Nerlove was concerned
about), neither the between group regression nor the within group regression
estimates are unbiased. It is first important to see whether we can say anything
about the direction of the biases. It is easier to determine the direction of the biases
for the between group regression estimates.

Consider the model:

Yie = WY1 + BXi + Uy
The between group regression estimates of « and f§ are computed from
yvi=oZ;, + Bx; + u; i=12,...N),

where y; = X, yy, x; = Z, X, Z; = %, y;,— 1. Noting that y; and Z; have (T— 1)
observations in common, we would expect them to be highly correlated. Hence if
M denotes the matrix of covariances of y;, Z;, x;,

Myy MyZ Myx
MZZ MZx s
M

XX

then unless T is very small, we would expect M, >~ M,; ~ Mz and M,, >~ M,
(where =~ denotes “approximately equal to”’). Since

(&) 1 [Mxx + MZx] [Myx]

B 4] + Mz, Mgz, My, |

where A = M ;M. — M%., we would expect the estimate & to be close to 1 and
the estimate 3 to beclose to 0. We would also expect the between group mean square
to be seriously biased downwards because of the high correlation between y;
and Z;.

Hence, if we start with the true values 0 < o < 1 and f > 0, we will find the
between group regression estimates of « upward biased and those of f downward
biased. Nerlove, in his Monte Carlo studies {2, 3], does not report the estimates
of the between group regression. But the example in the next section illustrates
these conclusions.

The direction of biases for the within group regression, viz., the LSDV, is not
so easy to analyze. However, we can say something if we are able to prove that the
elements of the vector B(0) = [W,, + 0B, '[W,, + 0B,,] are monotonically
increasing or decreasing functions of 6. Noting that 8 = (1 — p)/(1 — p + pT) we
see that for 6 = 0, we have the LSDYV estimate ; for some 6 in the range 0 < 0 < 1,
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we have the GLS estimate; for # = 1, we have the OLS estimate; and for 6 very
large, we have the between group regression estimates. Also noting that the
between group regression coefficient of « is close to 1, and the coefficient of g is
close to 0, if &) is a monotonically increasing function of @ and f(6) is a mono-
tonically decreasing function of 0, then we can show that the OLS estimate of a
will be upward biased and of f downward biased ; and the LSDV estimate of o
will be downward biased and of 8 upward biased, which is what Nerlove finds in
his Monte Carlo study [3].

It has not been possible to establish any general conclusions of this sort because
the condition involves some complicated expressions involving the within group
and between group covariances. In the case where there is only one covariate, it is
very easy to show that j(6) is a monotonically increasing or decreasing function
of 6. In the general case too, it appears that a similar result holds good in a large
number of situations, at least within the range 0 < 6 < 1. The example givenin
the next section illustrates these conclusions about the biases in the within group
and the between group regressions, and the monotonic behavior of &(6) and B(6).

Since the between group regression and the within group regression are both
biased (and the biases run in opposite directions), we should be able to do better
by taking a linear combination of these two regressions. Now it is also clear that
if the between group mean square is biased downwards, giving these two regression
estimates weights inversely proportional to their variances will give unduly heavy
weight to the between group regression. Hence we cannot rely on any estimates
obtained from the analysis of covariance similar to that mentioned in Table II.

In the case of ML too, noting that the between group covariance matrix will be
close to singularity in the presence of lagged dependent variables, the condition
(2.4) will also be satisfied more often. Hence the ML method will also give boundary
solutions more often in this case than in the case of purely exogenous variables.

In view of these results, Nerlove has suggested an alternative procedure. His
suggestion is to use the within group mean square as an estimate of ¢2 and to
estimate ¢ as the variance of the estimated dummies in the within group regression.
This estimate can be written as

k 2
6"% =N._1 |: = y.— ;1 ﬂr(xri - xr"):l

where
_lz —lz
,Vi~—T‘.Vin Y~-—Niy,",

with similar expressions holding for the k covariates x, ; 8, are the estimates of f8,
obtained from the within group regression.

In the case where the x’s are all exogenous, the expected value of this estimate is
6% + (62/T) which is slightly upward biased. Though this estimate is upward
biased, it has the advantage of being always positive.

In the case where there are lagged dependent variables, the bias in this estimate
is harder to evaluate, particularly because the 3, obtained from the within group
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regression are themselves biased. The indication from Nerlove’s Monte Carlo
study [3] is that it is strongly biased upwards. As for 42 too, it is no longer an
unbiased estimate of ¢2 in the presence of lagged dependent variables.

4. AN ILLUSTRATIVE EXAMPLE

The following artificial example illustrates the results presented in the previous
sections. In view of the fact that Nerlove has done extensive Monte Carlo studies
[2, 3], we have investigated only one sample. The main purpose of this example is
to investigate certain aspects of the model that were not investigated by Nerlove—
in particular the results of the between group regressions, and the monotonic
behavior of &(6) and j(6), and the possibility of multiple maxima for the likelihood
function.

Data were generated on the following models :

Vi, = 10+ ay;, 1 +u, (Model 1),
Yie = Bxi + u;, (Model 2),
Vi = 0y;—1 + Bx; + u,  (Model 3),
i=12...N;t=12,...T).

Model 1 has a lagged dependent variable, Model 2 has an exogenous variable, and
Model 3 has both. The u;, are assumed to have a normal distribution with covari-
ance matrix Q given in Section 1. The parameters chosen were: a = 0.7, § = 0.5,
62 =1.0,p = 04, N = 25,and T = 10. The exogenous variables were picked up
from Nerlove’s Monte Carlo study [3]. The same u;, were used for all models. The
initial values y;, were taken as y;; = u;;//1 — a? for Model 1 and y;, = fx;, +
u;1/~/1 — o2 for Model 3. In all, twenty values were generated for each i, but the
first ten were discarded so that T = 10. The results of the within group and between
group regressions were as follows.

For Model 1,

within group: & = 4747, R?> = 48, M. Sq. = .1211;
between group: & = 9888, R? = .93, M. Sq. = 2.7433.

For Model 2,

within group: § = 3422, R = .10, M. Sq. = 48;
between group: f = 4710, R? = .85, M. Sq. = 3.6393.

For Model 3,

within group: & = .3178, f = 1.0535, R* = .80, M. Sq. = .26;
between group: & = 1.000, B = .1032, R? = .9994, M. Sq. = .12.

Note that the between group estimate of a is biased towards 1 as expected.
Further, condition (2.4), for the occurrence of a boundary solution by the ML
method is satisfied only in Model 3. This is also the case where the within group
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mean square is greater than the between group mean square and hence the analysis
of covariance estimate of p is negative (though, as discussed in the text, there is no
basis for the use of this method in the presence of lagged dependent variables).
Both the estimates & and f are functions of 6.
In this particular example

i&a%e) = 3302.89 6% + 334.76 0 + 8.62
which is greater than 0 for 6 > 0. Also 95(6)/00 = —4376.88 6% — 466.320 —
13.43 which is less than 0 for 6 > 0. Hence, &6) is a monotonically increasing
function of 6 and ﬁ(ﬁ) is a monotonically decreasing function of 6.

Finally, to investigate whether the boundary solution at p = 0 in Model 3
gives a local maximum or a global maximum, the likelihood function was tabulated
over the entire range p = —.10 to p = .99 at intervals of 0.01. It was found that
the maximum at p = 0 was in fact a local maximum. The values of log L up to a
constant are shown in Table III for selected values of p. There is a local maximum

TABLE 111
A = log L + const. for Model 3*

p A p A
-.10 —24.68 .50 —6.96
-.09 —15.67 .60 —-3.75
—.08 —13.80 .70 —0.76
-.07 —13.34 72 —-0.24
—.06 —13.50 74 0.24
—.05 —13.75 76 0.67
—-.04 —-14.12 .78 1.05
—.03 —14.42 .80 1.33
-.02 —14.75 .82 1.52
—-.01 —15.03 .84 1.58

.00 —15.27 .86 147

.05 —16.05 .88 1.12

.10 —16.12 .90 0.45

.15 —15.73 92 —0.70

.20 —15.01 .94 —2.63

25 —14.02 96 —6.01

.30 —12.85 98 —1295
2 There are two maxima, a local maximum

at p = —.07 and a global maximum at
p = .84.

at p = —0.7 and a global maximum at p = .84. In the case of Models 1 and 2
there was only one maximum for the likelihood function. The relative likelihoods
of p for the three models are plotted in Figure 2. They do confirm the large bias in
the ML estimate of p that Nerlove talks about, though the direction of the bias is
towards the LSDV estimate rather than towards p = 0. This bias is large for the
models with lagged dependent variables but not for the model with only exogenous
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variables. Further, the likelihood functions are not flat around the maximum, thus
indicating that the problem is not one of likelihood functions spread over a wide
range of values of p and of our picking a maximum point on the likelihood function
that cannot be adequately distinguished from other values. Finally, in Model 3
there was a local maximum at p = —0.7 but the relative likelihood at this point
(relative to the value of the likelihood function at the global maximum p = .84)
was negligibly small. It is important to guard against such local maxima in finding
the ML estimate.

5. ANALYSIS OF THE MODEL WITH RANDOM TIME EFFECTS

The analysis contained in the previous sections can be very easily extended to
the case where there are random time effects in addition to random firm effects.
The rationalization for treating the time dummies as random is precisely the same
as that for treating the firm dummies as random.

The model now is y = Xf + u where u is an NT component vector, the i,jth
element u;; being equal to u; + t; + v;; where y; are the firm effects and 7; are the
time effects. We shall assume that y; are IN(0, 62), 7; are IN(0, 67), v;; are IN (0, 62),
and that these are mutually independent. We shall also assume that all variables
are measured as deviations from their respective means.

We can, as before, decompose the variances and covariances (let us call these
T.x, Ty, and T,) into three parts: (i) between firms (let us call these B,,, B,,,
B,,); (ii) between time periods (let us call these C,,, C,,, C,,); and (iii) the residual
(let us call these W,,, W,,, W,,). Define 0, = ¢2/(¢2 + To?) and 0, = ¢2/(c? + No?2).
Then the GLS estimate of § can be easily shown to be equal to

(5.1) B =[Wy + 0,B,, + 0,C..]1"[W,, + 0,B,, + 6,C,].

This is a generalization of formula (1.3). As N —» co and T — o0, f — W7! Wy,
which is the LSDV estimate. For §, = 1 and 0, = 1, we get the OLS estimate.

What formula (5.1) does is to combine the regression estimates obtained from
the between firm variation, between time-period variation and the residual
variation, weighting them in inverse proportion to their variances. In case there
are only exogenous variables present, all three of these estimates are unbiased
and the estimate of  given by (5.1) is the best unbiased linear estimate (if 6, and
0, are known). It is thus evidently more efficient than the LSDV or OLS estimates.
In case there are lagged dependent variables present, however, none of these three
estimates is unbiased. As before we can argue that the between firm and between
time-period regression estimates are biased, the coefficient of the lagged dependent
variable being biased towards 1 and the coefficient of the exogenous variable
being biased towards 0. Again, the intuitive argument in favor of the pooling
procedure suggested by (5.1) is that the usual procedures of OLS and LSDYV are
all or nothing ways of utilizing the between time-period variation and the GLS
procedure implied in (5.1) is a compromise solution.

The analysis of the behavior of the likelihood function contained in Section 2
can be extended to this case. But no simple conclusions are possible because of
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the presence of some interaction terms. First, we note that the determinant of the
covariance matrix € is given by
log|Q = (N — I)(T - 1)loga? + (N — 1)log(6? + To?)
+ (T = 1)log (62 + Na?) + log(6? + To? + No?)

which can be written in terms of 8,, 0,, and 2. After the simplifications used in
Section 2 we can write the concentrated likelihood function as

(5.2) —21log(f,,0,) = const. + NTlogé? — Nlogf, — Tlog0,
+ log(f, + 6, — 0,0,)
where
(53)  NTé&2 =[W, + 6,B,,+ 0,C,, — (W, + 0,B,, + 0,C,,)
X (W, + 0,B,, + 0,C..)"'(W,, + 0,B,, + 0,C,))].

Now log 0, is a steadily increasing function of 8, and log 6, is a steadily increasing
function of 6,. Also, as before, we can easily show that

2 B, B 1
a(NTav) — [1’ ll][ yy Yx][ :I
a0, B, Bl

xy

ANTE}) _ [, 4 [ny ny][1]
96, Cy Cudld

xy

where A = [W,, + 0,B,, + 0,C,,1”'[W,, + 0,B,, + 0,C,,], and since the B and
C matrices are positive definite, these expressions are greater than zero. Also

and

P(NTs2 , )

—_(6—6%_) = _2('1 Bxx - Byx)[Wxx + ngxx + 02Cxx] I(Bxx}L - Bxy)
and

0*(NTé6?

_—(Fe—gg”v) = —z(llcxx - ny)[u/xx + olex + OZCch]“l(Cxx'1 - ny)’

which are less than zero for 6, > 0 and 6, > 0. Thus, the first derivative of NT
log 62 with respect to 0, is greater than zero and the second derivative is less than
zero, and similarly for the derivatives with respect to 6,. But because of the
presence of the interaction term log (6, + 6, — 6,0,), no simple conclusions such
as those in Section 2 can be deduced. If we assume that this factor is dominated by
the other factors in (5.3) so that it can be ignored, then we can show that a boundary
solution will occur (i) at 6, = 1 if

v‘/yy + Byy + 92ny - o('l(VVxx + Bxx + 92Cxx)a1
> T(B,, — 2¢1B;, + a1B.2),
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or (ii) at 6, = 1 if
W,, + 0,B,, + C,, — a5(W,, + 0,B,, + C, ),
> N(C,, — 2a,C,, + a,C,,0a,)
where
oy = (Wix + Byy + 0,C)7'(Wy, + By, + 6,C,,)
and
o = (Wes + 0,B,; + Co)” (Wi, + 0,B,, + Cy).

In any case these conclusions are not very useful because there is no way of deciding
a priori whether or not these boundary solutions correspond to global maxima of
the likelihood function.

6. SIMULTANEOUS EQUATIONS MODELS ESTIMATED ON A TIME SERIES OF
CROSS SECTIONS

The results in the previous sections can be easily extended to simultaneous
equations models. Since the algebraic manipulations are similar, only the final
results will be stated here.

If one is interested in estimating only the reduced form equations, since the
residuals of the reduced form equations have the same structure as the residuals
of the structural equations, we obtain three estimates for the reduced form para-
meters : one from the between firm variation, one from the between time-period
variation, and one from the residual variation. Also by virtue of the well known
result that simultaneous estimation of the system of unrestricted reduced form
equations is equivalent to estimating each equation separately, we can use the
variance component technique separately for each equation. If there are no lagged
endogenous variables in the model, then one can use the analysis of variance
described in Section 3 and get estimates of the variance components. The sub-
sequent estimates of the reduced form parameters obtained on the basis of these
estimated variance components are still unbiased. If there are lagged endogenous
variables in the system, then, as mentioned earlier, none of the estimates (from the
between firm, between time-period, and residual variation) is unbiased. The
problem of optimal estimation of variance components has been discussed
earlier and nothing needs to be added to the earlier analysis.

Things get complicated when it comes to structural estimation. Suppose we are
interested in estimating the first structural equation by two-stage least squares
(2SLS). Again, a decomposition of the error into three independent components
(between firm, between time period, and residual) leads us to three independent
estimates for the parameters concerned. One can decompose the variance-co-
variance matrix of the endogenous and exogenous variables into three compo-
nents: (i) between firms—say the B matrix; (ii) between time periods—say the C
matrix ; and (iii) residual—say the W matrix. Let T = B + C + W. Then one can
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compute 2SLS estimates from each of these covariance matrices. The 2SLS
estimates obtained from the T matrix are the estimates from the pooled sample.
The 2SLS estimates obtained from the W matrix are the estimates obtained if the
data are pooled but firm and time-period dummies are introduced. If only firm
dummies are used, then we use the (W + C) matrix. The efficient variance compo-
nent estimates are obtained by weighting the independent estimates from B, C,
and W in inverse proportion to their variances.

The problem we run into, however, is that the covariance matrices of these
three estimates (in addition to involving the unknown variance components)
are the asymptotic covariance matrices, and if we resort to asymptotic arguments,
we again encounter the old problem that the variance component estimator and the
usual estimator with dummy variables are equivalent. In any case if one is faced
with the problem of estimating a simultaneous equations model on the basis of
data consisting of a time series of cross sections, it is advisable to compute in prac-
tice the 2SLS estimates (or any other estimates being used) from each of the above
mentioned sources of variation in addition to the total. Often, it might happen
that there would not be enough degrees of freedom available in the B matrix or the
C matrix. If this is so, this matrix should be pooled with the W matrix.

Alternatively one could obtain the 2SLS estimates from the covariance matrix
(W + 6,B + 6,C) where 0, and 0, lie between 0 and 1. One could compute these
estimates for different values of 8, and 0, (say at intervals of 0.1) and choose that
set of estimates for which the generalized variance of the estimated covariance
matrix is minimum. These techniques will be illustrated with an example in a
subsequent paper.

7. CONCLUSIONS

The paper argues that variance components models are very useful in pooling
cross section and time series data because they enable us to extract some inform-
ation about the regression parameters from the between group and between time-
period variation—a source that is often completely eliminated in the commonly
used dummy variable techniques. We can also rationalize this procedure of treating
the firm effects and time effects as random by arguing that these effects too, like
the over-all residual, measure our ignorance and there is no reason to treat one
source of ignorance as random and the other as fixed. The paper studies the
applicability and usefulness of the maximum likelilhood method and analysis of
covariance techniques in the analysis of this type of model—particularly when one
of the covariates used is a lagged dependent variable. The paper first analyzes
a model with only random firm effects and then extends the analysis to one with
random firm and time effects. Since the conclusions are similar, we shall summarize
the conclusions for a model with only firm effects. There are four conclusions.

(1) When we write the likelihood function in its concentrated form, it consists
of two components, one a steadily increasing function of the parameter p, and the
other a steadily decreasing function. The likelihood function cannot attain a
maximum at the boundary value p = 1 (corresponding to LSDV). But it can
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attain a boundary solution at p = 0 (corresponding to OLS) if the range of p is
confined to 0 < p < 1. The condition for the occurrence of such a boundary
solution has been derived. It shows that the boundary solution can occur even
when the covariates are exogenous, though the boundary solution could occur
more often if the covariates contain lagged dependent variables since the between
group covariance matrix may then be close to singularity. This boundary solution,
however, can correspond to just a local maximum rather than a global maximum
as illustrated by the example in Section 4.

(2) As for the usefulness of covariance techniques, when only exogenous
variables are present, both the between group and within group regressions
give unbiased estimates of the slope coefficients. In general we could combine
these two estimates by weighting them in inverse proportion to their variances,
as obtained from the usual analysis of covariance. This does not amount to using
the ML method. Pooling on the basis of estimated variances and pooling with the
use of the likelihood function are not the same.

(3) In the case where there are lagged dependent variables, neither the between
group nor the within group regression gives unbiased estimates of the slope co-
efficients. The between group regresson estimates are badly biased—the co-
efficient of the lagged dependent variable is biased towards one and the coefficient
of the exogenous variable towards zero. Also, the between group mean square is
biased downwards. Hence analysis of covariance techniques cannot be relied on
to give optimal estimates. The method of ML, too, has its drawbacks since it often
gives boundary solutions. The solution offered by Nerlove does not get us into
this problem, and as shown by his Monte Carlo studies, it gives better estimates
than the method of ML or the LSDV method. However, as our analysis indicates,
it is expected to be biased towards the LSDV method.

(4) Those working with problems of pooling cross section and time series
data usually present either the OLS or the LSDV estimates. It is, however, advisable
to present, in addition, the estimates obtained from the between group and
between time-period variation.

Since the analysis in this paper can be easily extended to simultaneous equations
models based on time series of cross sections, these conclusions hold good for
such models too. One important assumption, however, that is needed for the
validity of the analysis in this paper is that the “‘specific ignorance” be assumed
to be independent of the regressors—an assumption that may not always be valid
and that is not needed for the consistency of the least squares with dummy variable
techniques.

Upniversity of Rochester
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